

Hutchinson

Environmental Sciences Ltd.

Stormwater Assessment, Planning and Implementation of the Cobden Agriculture Area

Background Review

Prepared for: Township of Whitewater Region Job #: J210005

July 28, 2021

1-5 Chancery Lane, Bracebridge ON P1L 2E3 705-645-0021 202-501 Krug Street, Kitchener ON N2B 1L3 519-576-1711 July 28, 2021

HESL Job #: J210005

Ivan Burton Planner/Economic Development Officer Township of Whitewater Region 44 Main Street, P.O. Box 40 Cobden, ON K0J 1K0

Dear Mr. Burton:

Re: Stormwater Assessment, Planning and Implementation of the Cobden Agriculture Area – Background Review

The goal of this project is to characterize existing stormwater quality and stormwater management in Cobden's agricultural area and recommend and implement mitigation measures to reduce nutrient loading to Provincially Significant Wetland (PSW) and Muskrat Lake. A background review was completed which included preliminary consultation with the agricultural community and environmental partners, characterization of existing stormwater management, identification of source areas of nutrient loss, evaluation of Cobden and Snake River Provincially Significant Wetland functions in relation to stormwater management (SWM), and preliminary identification of priority areas for management.

A multitude of lakes, rivers and wetlands are located in the study area which influence nutrient cycling between the watershed and Muskrat Lake, while agricultural SWM is limited to three tile drains and one municipal drain in the study area. In the Snake River Watershed, large extents of flooding were evident throughout the spring of 2019. Nutrients were similar or slightly higher than other agricultural-dominated watersheds in Ontario. Median total phosphorus and total nitrogen concentrations and loads/ha were all highest at SC-02 which is located at the eastern side of the Snake River PSW. The Cobden and Snake River both support a wide variety of natural heritage features and functions. The Snake River PSW consistently acts as a nutrient sink while the Cobden PSW acts as a nutrient source.

We identified three priority areas for future implementation of Best Management Practices (BMPs) based on the results of the study: SC-02 catchment, previously flooded areas on the west side of Muskrat Lake, and Muskrat Lake riparian lands. Subsequent phases of the study will focus on a) consultation and education, and b) identification of BMPs and quantification of nutrient load reductions.

Sincerely, Per. Hutchinson Environmental Sciences Ltd.

Brent Parsons, M.Sc. Senior Aquatic Scientist

Signatures

Report Prepared by:

Unions

Brent Parsons, M. Sc. Senior Aquatic Scientist

alaar

Christine Geiger, M.Sc. Aquatic Scientist

linclair

Deborah Sinclair, M.A.Sc. Senior Aquatic Scientist

A. Bishop

Andrea Bishop, P.Eng. Civil Engineer, Jp2G Consultants Inc.

Stephen Arends, P.Eng. Civil Engineer, Jp2g Consultants Inc.

Bian White head

Brian Whitehead, MCIP, RPP Principal, Planning Services, Jp2g Consultants Inc.

Executive Summary

Water quality in Muskrat Lake is one of the primary issues of importance to the Township of Whitewater Region. An objective of the Township's Official Plan policies is to participate with the Muskrat Watershed Council for the purpose of improving the water quality of the Lake. It is also an objective of the Plan to ensure that stormwater management practices minimize stormwater volumes and contaminant loads.

The goal of this project is to characterize existing stormwater quality and stormwater management in Cobden's agricultural area and local Provincially Significant Wetlands (PSWs), recommend and implement mitigation measures to reduce nutrient loading to PSWs and Muskrat Lake, develop information sharing amongst local and regional groups and residents, and develop lasting partnerships between the agricultural sector and regional organizations to help improve water quality in Muskrat Lake and the PSWs in both the short and long-term. The Muskrat Lake watershed encompasses several different municipalities but the study area and focus for this project has been defined as the Township of Whitewater Region (Figure 1).

The Muskrat Lake watershed has been very well studied in terms of water quality and land use, so a thorough background review was completed to set the stage for subsequent project tasks. The background review is described herein and was completed following five specific tasks:

- 1. Preliminary consultation with the agricultural community and environmental partners;
- 2. Characterization of existing stormwater management;
- 3. Identification of source areas of nutrient loss;
- 4. Evaluation of Cobden and Snake River Provincially Significant Wetland functions in relation to stormwater management (SWM); and
- 5. Preliminary identification of priority areas for management.

Preliminary consultation has been initiated through consultation with select groups and will advance after completion of this report through project notification focus group engagement and micro meetings.

A multitude of lakes, rivers and wetlands are located in the study area which influence nutrient cycling between the watershed and Muskrat Lake. These natural heritage features will be considered during future project phases when selecting and implementing of BMPs which aim to improve nutrient retention in these systems. Artificial SWM is limited to three tile drains and one municipal drain in the study area.

In the Snake River Watershed, there are significant floodplains due to the flat surrounding areas between the Snake River PSW and Muskrat Lake. Large extents of flooding were evident throughout the spring of 2019 and designated as either "Class 2 – Open Water" or "Class 3 – Flooded Vegetation".

Nutrients were similar or slightly higher than other agricultural-dominated watersheds in Ontario. Phosphorus concentrations were highest in the summer, TN was highest in the spring and fall, and neither nutrient concentration was statistically significantly related to precipitation. Total suspended solid concentrations were low and significantly related to TP at the three sites located in the Cobden PSW which could be driven by upstream overland runoff.

Median TP and TN concentrations, as well as TP and TN loads/ha were all highest at SC-02. The next most nutrient-enriched sites were MKR-03 and SNR-04.

畿

The Cobden and Snake River both support a wide variety of natural heritage features and functions. The Snake River PSW consistently acts as a nutrient sink while the Cobden PSW acts as a nutrient source. The assessment of TP retention in the Cobden PSW was limited because the downstream water sampling location was located in the middle of the wetland, thereby limiting the spatial assessment.

We identified the following priority areas for future BMP implementation based on the results of the study:

1. SC-02 Catchment

Nutrient concentrations and loads/ha were the highest at SC-02 so future project phases should be focused in this area to reduce nutrient loading and nutrient concentrations in the Snake River PSW, Snake River and downstream Muskrat Lake. It should be noted however that the nutrients will be transformed in the PSW through a variety of biogeochemical processes and therefore a reduction in nutrient loads will not equal those that are displaced from Muskrat Lake.

2. Previously Flooded Areas

Flooding results in significant nutrient loading to downstream receiving waterbodies. Class two and three lands that flooded in the spring of 2019 should be assessed during future project phases in an attempt to lower nutrient loading from these areas and improve agricultural productivity. The majority of these previously flooded areas are located between the Snake River PSW and Muskrat Lake along the western shore of Muskrat Lake.

3. Muskrat Lake Riparian Lands

The Muskrat Lake watershed includes a number of agricultural lands that drain directly into the western shore of Muskrat Lake and runoff is not afforded phosphorus retention in watercourses, wetlands or other lakes. These lands should be examined as part of future project phases. Many of these agricultural operations appear to have little riparian buffer between cropland and the shoreline of Muskrat Lake.

Table of Contents

	smittal Le	tter	
-	atures		
	utive Su	•	
Acro	onyms		1
1.	Intro	uction and Local Policy Context.	
2.	Meth	ods	5
	2.1	Preliminary Consultation	
	2.2		
	2.3		5
		2.3.1 Water Quality	5
		2.3.2 Land Use Mapping	
	2.4	Cobden and Snake River PSWs	7
3.	Prelin	ninary Consultation	
4.	Exist	ng Stormwater Management	
	4.1	Natural Stormwater Management	Features11
		4.1.1 Watercourses	
		4.1.2 Lakes	
		4.1.3 Floodplains	
		4.1.4 Wetlands	
	4.2	Artifical Stormwater Management	Features16
		5	
		4.2.2 Municipal Drainage	
5.	Sour	e Areas of Nutrient Loss	21
	5.1		21
		•	
		-	
		•	
	5.2		
		11 0	
		5.2.2 Within 1 km of Water Qua	lity Sampling Locations
6.		-	ignificant Wetlands37
	6.1		
		•	
		0	
	6.2		
		•	
		6.2.2 Total Nitrogen	
7.	Conc		
	7.1		
	7.2	Existing Stormwater Management	

Refere	nces	46
7.5	Identification of Priority Areas	44
74	Cobden and Snake River PSWs	44
7.3	Source Areas of Nutrient Loss	43
	7.4 7.5	 7.3 Source Areas of Nutrient Loss 7.4 Cobden and Snake River PSWs 7.5 Identification of Priority Areas References

List of Figures

Figure 1. Township of Whitewater Region Boundaries and Water Quality Sampling Locations
Figure 2. Cobden Provincially Significant Wetland
Figure 3. Snake River Provincially Significant Wetland9
Figure 4. Muskrat River and Local Lakes12
Figure 5. Floodplain Mapping Classes14
Figure 6. Floodplain Mapping Dates15
Figure 7. The Locations of Tile Drains in the Study Area
Figure 8. Monthly Total Phosphorus Concentrations in The Whitewater Region from April to October from
2014 to 2019
Figure 9. Monthly Total Nitrogen Concentrations in the Whitewater Region from 2014 to 201927
Figure 10. Monthly Suspended Solids Concentrations in the Whitewater Region from 2014 to 201730
Figure 11. Total Suspended Solid vs. Total Phosphorus Concentrations at MKR-01
Figure 12. Total Suspended Solid vs. Total Phosphorus Concentrations at BC-01
Figure 13. Total Suspended Solid vs. Total Phosphorus Concentrations at MKR-03
Figure 14. Total Suspended Solid vs. Total Phosphorus Concentrations at SC-02
Figure 15. Total Phosphorus Concentrations Upstream and Downstream of the Cobden PSW between
2014 and 2019
Figure 16. Total Nitrogen Concentrations Upstream and Downstream of the Cobden PSW between 2014
and 2019
Figure 17. Total Phosphorus Concentrations Upstream and Downstream of the Snake River PSW between
2014 and 2019
Figure 18. Total Nitrogen Concentrations Upstream and Downstream of the Snake River PSW between
2014 and 2019
Figure 19. Priority Area for Implementation of Future BMPs45

List of Tables

Table 1. Descriptions of Water Quality Sampling Locations (Dalton 2019).	.6
Table 2. Phosphorus Reduction Efficiencies of Rivers from Various Studies1	11
Table 3. Total Phosphorus, Total Nitrogen and Total Nitrogen : Total Phosphorus at MLK-02	22
Table 4. Total Phosphorus Summary Stats for the Whitewater Region for April to October 2014 to 201	9.
	23
Table 5. Number of Monthly Samples Available per Site	25
Table 6. Linear Regression Results for Total Phosphorus and Precipitation	25
Table 7. Exceedance of PWQO and Threshold for Impairment for Phosphorus (0.030 mg/L) in th	ne
Whitewater Region	25
Table 8. Total Nitrogen Concentrations in the Whitewater Region from April to October from 2014 to 201	9.
	26

Table 9. Number of Monthly Samples Available per Site
Table 10. Linear Regression Results for Total Nitrogen and Precipitation
Table 11. Exceedance of Total Nitrogen Threshold for Stream Impairment (1.10 mg/L) in the Whitewater
Region
Table 12. Suspended Solids Concentrations in the Whitewater Region from April to October from 2014 to
2019
Table 13. Number of Monthly Samples Available per Site
Table 14. Linear Regression Results for Suspended Sediments and Precipitation
Table 15. Linear Regression Results for Total Phosphorus and Suspended Solids
Table 16. OFAT Mean Annual Flow Values at Water Quality Monitoring Sites within Whitewater Region.
Table 17. Mean Annual Total Phosphorus Loads in the Whitewater Region
Table 18. Mean Annual Total Nitrogen Loads for the Whitewater Region
Table 19. The Amount and Percentage of Agricultural (and undifferentiated) Land within the Catchment of
each Water Sampling Location
Table 20. Land Uses Adjacent to Water Sampling Locations
Table 21. Median Monthly Change in Phosphorus Concentrations in the Cobden PSW
Table 22. Median Monthly Change in Total Nitrogen Concentrations Upstream and Downstream of the
Cobden PSW
Table 23. Median Monthly Change in Phosphorus Concentrations Upstream and Downstream of the Snake
River PSW41
Table 24. Monthly Mean Total Nitrogen Concentrations Upstream and Downstream of the PSWs42
Table 25. Priority Areas Based on Concentrations and Loads

Appendices

Appendix A. Stormwater Assessment, Planning and Implementation Contact List Appendix B. Agricultural Lands within Catchments of Water Quality Sampling Locations Appendix C. Land Uses within 1 km of Water Quality Sampling Locations (Dalton, 2019)

Acronyms

- **BMPs Best Management Practices**
- EPA Environmental Protection Agency
- HESL Hutchinson Environmental Sciences Limited
- Jp2g Jp2g Consultants Inc.
- MECP Ministry of Environment, Conservation and Parks
- MMAH Ministry of Municipal Affairs and Housing
- MNRF Ministry of Natural Resources and Forestry
- MOE Ministry of Environment
- NRCan Natural Resources Canada
- OFAT Ontario Flow Assessment Tool
- PSW Provincially Significant Wetland
- PWQO Provincially Significant Wetland
- SWM Stormwater Management
- TN Total Nitrogen
- TP Total Phosphorus
- TSS Total Suspended Solids
- WWTP Wastewater Treatment Plant

1. Introduction and Local Policy Context

Muskrat Lake is the drinking water source for the Cobden municipal drinking water system, it is nutrientenriched, and concerns have arisen related to the formation of blue-green algal blooms. Blue-green algal blooms affect recreational opportunities but can also cause significant health effects. AECOM (2009) determined that algal toxins represent a high level of risk to the Cobden drinking water supply. A variety of different physical, chemical and biological factors cause algal bloom formation, but lake and watershed managers often focus on nutrients during management as nutrients are generally the limiting factor for algal growth in freshwater ecosystems.

Water quality sampling locations established in the Muskrat Lake watershed have found that nutrient concentrations in inflowing tributaries are high, and in-stream concentrations of nutrients and suspended solids tended to increase with increasing crop land and decrease with increasing natural habitat (Dalton, 2019). Nutrient concentrations were typically elevated in watercourses adjacent to or downstream from agricultural operations due to runoff from fertilizers, decomposed crop residues, and manure. Dalton (2019) therefore recommended that improvements to water quality in Muskrat Lake should focus on reducing nutrient inputs from agricultural lands in the Muskrat Lake watershed.

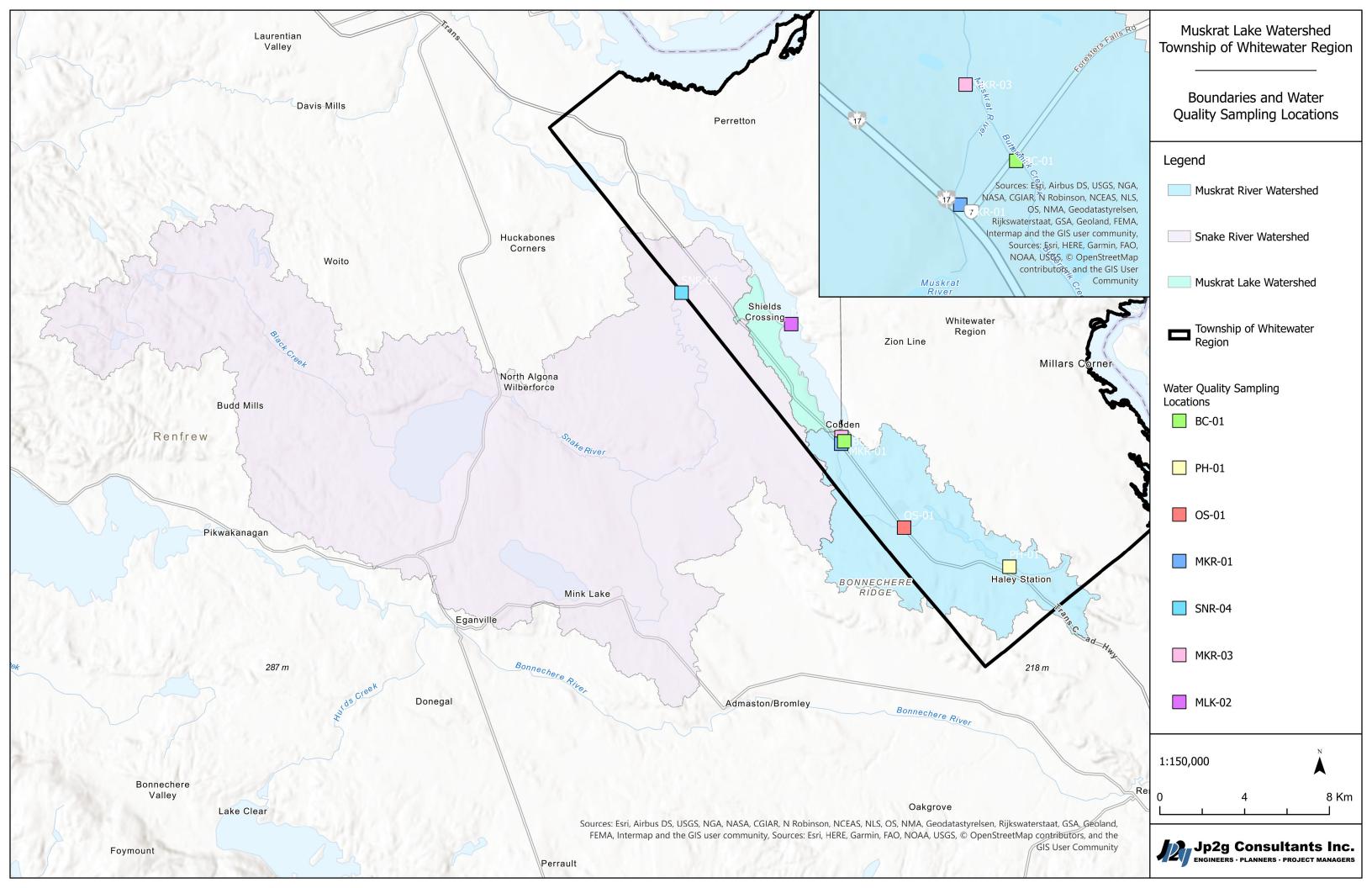
Water quality in Muskrat Lake is one of the primary issues of importance to the Township of Whitewater Region. An objective of the Township's Official Plan policies is to participate with the Muskrat Watershed Council for the purpose of improving the water quality in the Lake. It is also an objective of the Plan to ensure that stormwater management practices minimize stormwater volumes and contaminant loads.

The Township of Whitewater Region has adopted Official Plan policies for the purpose of improving the water quality of Muskrat Lake. Lands located within 400 metres of Muskrat Lake have been designated as the Muskrat Lake Policy Area on Schedule "A" to the Official Plan. The Muskrat Lake policies recognize that a holistic solution involving government agencies (municipal, provincial and federal), community organizations (agricultural, recreational, residential) and the public is necessary to address nutrient sources that are contributing to water quality problems in the Lake. The Township is committed to working with individuals, agencies and organizations to:

- 1. Promote public awareness and initiatives for reducing nutrient flows and improve water quality;
- 2. Engage in meaningful public consultations;
- 3. Develop a water quality improvement plan to achieve water quality improvement objectives;
- 4. Attract funding for the development and implementation of the water quality improvement objectives; and
- 5. Monitor the success of the water quality improvements over the long-term.

Agriculture is the predominant land use within the study area. Lands located on the west side of Muskrat Lake are designated Waterfront – Exception Two (Muskrat Lake Policies) and Agriculture by the Official Plan. A Minister's modification to re-designate a portion of these lands from Waterfront – Exception Two to Agriculture has been outstanding since the Township's Official Plan policies were approved by Ministry of Municipal Affairs and Housing (MMAH) on August 6, 2019. This re-designation, when implemented, will delete most of the Waterfront designation and extend the Agriculture designation to the western shoreline

of Muskrat Lake. The PSW's within the study area are designated Environmental Protection on Schedule "A" to the Official Plan.


The goal of this project is to characterize existing stormwater quality and stormwater management in Cobden's agricultural area and local Provincially Significant Wetlands (PSWs), recommend and implement mitigation measures to reduce nutrient loading to PSWs and Muskrat Lake, develop information sharing amongst local and regional groups and residents, and develop lasting partnerships between the agricultural sector and regional organizations to help improve water quality in Muskrat Lake and the PSWs in both the short and long-term. The Muskrat Lake watershed encompasses several different municipalities but the study area and focus for this project has been defined as the Township of Whitewater Region (Figure 1).

The Muskrat Lake watershed has been very well studied in terms of water quality and land use, so a thorough background review was completed to set the stage for subsequent project tasks. The background review is described herein and was completed following five specific tasks:

- 1. Preliminary consultation with the agricultural community and environmental partners;
- 2. Characterization of existing stormwater management;
- 3. Identification of source areas of nutrient loss;
- 4. Evaluation of Cobden and Snake River Provincially Significant Wetland functions in relation to stormwater management (SWM); and
- 5. Preliminary identification of priority areas for management.

The next steps in the project will include the Planning, Action and Public Education Phases. The Planning Phase will be focused on identifying BMPs or stewardship activities (such as tile drains, constructed wetlands, manure storage, buffer strips, bank stabilization of cattle exclusion fencing), and quantifying the nutrient load reductions associated with implementation of specific BMPs. The Action and Public Education Phases will be focused on communication, public education and awareness that builds on preliminary consultation activities completed as part of the background review.

2. Methods

2.1 Preliminary Consultation

Jp2g and HESL reached out to agricultural and environmental partners for the purposes of explaining the study program, data collection and establishing contacts to keep agricultural and environmental partners informed throughout the work program. A public and agency contact list was also developed for project notification for future stages of the project.

2.2 Existing Agricultural SWM

Existing SWM for the Cobden and surrounding agricultural area was determined through local knowledge, background material, Google Earth, Ontario Flow Assessment Tool, the Township, and MTO Drainage Management Manual. Jp2g also completed field investigations to document SWM features. National Research Canada flood plan mapping was obtained from the County of Renfrew and reviewed to determine the areas and extent of flooding in the study area.

2.3 Source Areas of Nutrient Loss

Source areas of nutrient loss were identified through field investigations, evaluation of historical water quality data, review of land use and flood plain mapping. Source areas of nutrient loss were identified to focus future phases of the study on priority areas where the implementation of BMPs should be focused to generate the greatest benefit to downstream receiving water systems.

2.3.1 Water Quality

Twenty-two water quality sampling locations were sampled monthly from May to September 2014 – 2019 to characterize stormwater quality and to identify tributaries that are highly impacted by nutrients (Figure 1). The project was led by Algonquin College (Pembroke) and the Muskrat Watershed Council. Water quality parameters were analyzed by Ministry of Environment, Conservation and Parks (MECP) and reports were produced by Rebecca Dalton (Dalton 2015; Dalton 2019).

Water quality data from sampling stations located in the Township of Whitewater were analyzed through comparisons with Provincial Water Quality Objectives (PWQOs) and values reported in literature. Data were assessed spatially between sites and temporally over seasons. Sites included Muskrat River (PH-01), Muskrat River (OS-01), Muskrat River (MKR-01), Buttermilk Creek (BC-01), Cobden Wetland (MKR-03), Unnamed Creek (SC-02), Snake River (SNR-04) and Muskrat Lake (MLK-02; Table 1; Figure 1).

Nutrient loads were calculated to provide another means of identifying nutrient source areas. Loads for each site were calculated by multiplying median concentrations by the mean annual flow. Mean annual flows were estimated using the Ontario Flow Assessment Tool (Ministry of Natural Resources and Forestry, 2020) and the built-in flow Mean Annual Flow Hydrology Model (Ministry of Natural Resources, 2003).

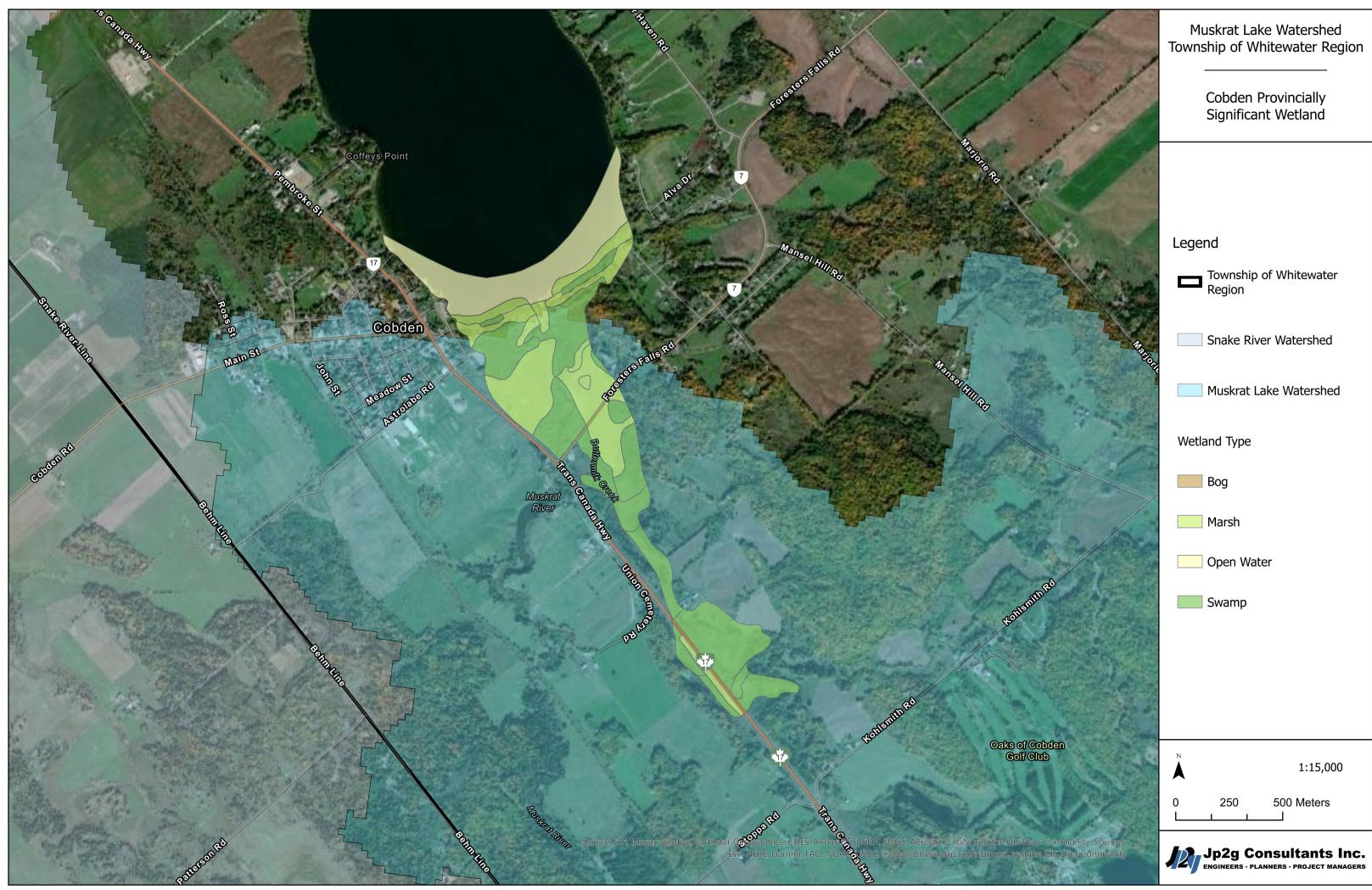
Site	Watercourse	Sub- Watershed	Easting	Northing	Rationale
PH-01	Muskrat River	Muskrat	362174	5047911	Most upstream site on Muskrat River
OS-01	Muskrat River	-	357146	5049780	This site reflects important land use changes from PH-01 (e.g. increased development and agriculture)
MKR-01	Muskrat River		354178	5053726	Upstream extent of Cobden PSW
BC-01	Buttermilk Creek	1	354318	5053859	Only site on tributary
MKR-03	Cobden Wetland/Muskrat River		354210	5053897	High phosphorus. This wetland warrants further study to assess the impact of the sewage treatment plant on export of phosphorus to Muskrat Lake.
SC-02	Unnamed Creek	Snake	348236	5058891	Existing highly impacted site. Only site on this tributary.
SNR-04	Snake River	1	346660	5060866	Existing, highly impacted, most downstream site.
MLK-02	Muskrat Lake	Lake	351810	5059377	Critical site for establishing long- term trends in nutrients within Muskrat Lake.

Table 1. Descriptions of Water Quality Sampling Locations (Dalton 2019).

2.3.2 Land Use Mapping

Land use was determined to help identify source areas of nutrient loss at two different scales. Dalton (2019) characterized land use in a 1000 m x 200 m wide area (100 m on either stream/river bank) using 30 cm resolution satellite imagery data from Agriculture and Agri-food Canada's 2014 Crop Inventory. Percentages of annual crop land, pasture/forage land, natural habitat and developed land were calculated. Those numbers are reproduced here to inform the identification of nutrient source areas.

The agricultural area within the catchment for each water quality sampling location was calculated using the Ontario Flow Assessment Tool to provide an indication of land use at a larger scale. Land uses were used to inform the assessment through comparison with water quality data to help determine if there is a linkage between land use and water quality to define future priority areas.


2.4 Cobden and Snake River PSWs

The Cobden and Snake River PSWs are both located in the Muskrat Lake Watershed (Figure 2; Figure 3). The Ministry of Natural Resources and Forestry (MNRF) categorizes wetlands as Provincially Significant based on a science-based ranking system. We characterized the wetland features and functions of the Cobden and Snake River PSWs through review of the:


- Snake River Marsh Conservation Reserve Management Statement (Province of Ontario, 2019)
- Snake River Wetland Data Record (MNRF, undated)
- Cobden Wetland Data Record (MNRF, undated)
- Environmental Impact Study Cobden Wasterwater Treatment Plant Upgrades (Muncaster Environmental Planning and JP2G Consultants, 2016)

Features and functions of the PSWs were assessed in relation to natural heritage features to define the ecological sensitivities of these wetlands as receiving water systems of agricultural runoff. We also assessed the PSWs in terms of stormwater management through a review of water quality data at upstream and downstream sampling locations to determine when they act as sources or sinks for nutrients.

Muskrat Lake Watershed Township of Whitewater Region							
Cobden Provincially Significant Wetland							
Legend							
Township of Whitewater Region							
Snake River Watershed							
Muskrat Lake Watershed							
Wetland Type							
Bog							
Marsh							
Open Water							
Swamp							
N 1:15,000							
0 250 500 Meters							

3. Preliminary Consultation

A project kickoff meeting was completed on February 18, 2021, which included Karen Coulas from the Muskrat Watershed Council, Ivan burton and Lane Cleroux from the Township of Whitewater Region, Jp2g Consultants Inc. and HESL. The meeting included a review of project scope and deliverables, identification of background material, and establishment of lines of communication.

To date, HESL and Jp2g have corresponded with MECP, Rebecca Dalton (author of the Muskrat Lake Watershed – 2017-2019 Water Quality Reports), Julie Sylvestre from Algonquin College, and the County of Renfrew to obtain Natural Resources Canada (NRCAN) mapping information for the 2019 flood.

Jp2g has drafted a public and agency contact list for the purposes of project notification and the identification of individuals and groups interested in participating in the Action and Public Education Stages of the Study process (Appendix A). The draft public and agency contact list includes relevant Provincial agencies, local agricultural organizations, non-government organizations (NGO's), Algonquin College and the general public. A description of the "Purpose of Study" has also been drafted for the project notification purposes.

This public and agency circulation list will be reviewed with the Township and Muskrat Watershed Council prior to project notification. The form of consultation during the Action and Public Education Stages will depend, in part, on the interested expressed by individuals and groups as per the direction of the Township. It is anticipated that public and agency consultation will consist of a combination of macro (broad-based public and agencies) focus group engagement and micro (individual/kitchen-table) level meetings. Options for public notification and participation during the Study process will be developed as per direction from the Township and include, but not be limited to the following:

- 1. Keeping interested individuals and organizations informed throughout the Study process.
- 2. General notifications (i.e. local newspapers; Township/MWC web-pages) regarding the Study and opportunities for participation during the Action and Public Education stages of the work plan.
- 3. Focus group session(s) with one or a combination of interested agricultural, agency, NGO and academic organizations.
- 4. Identification of individuals from the agricultural community for the purpose of obtaining input and buy-in on effective BMP's.
- 5. Preparation of information materials that can be circulated to individuals and the public.
- Public meeting(s) (virtual or in public depending on COVID 19) to present the study results and Action Plan moving forward.

4. Existing Stormwater Management

Existing SWM provided by natural systems and agricultural treatment in the study area was documented through background review and field investigations.

4.1 Natural Stormwater Management Features

4.1.1 Watercourses

The Muskrat and Snake Rivers drain into Muskrat Lake. The Muskrat River flows from Renfrew through a chain of small lakes into the Cobden PSW (Figure 4) and Muskrat Lake while the Snake River flows into Lake Dore before emptying into the Snake River PSW and Muskrat Lake.

Nutrient retention in riverine systems occurs through complex biogeochemical and physical processes that remove, delay or transform the nutrients. Factors affecting nutrient retention in watercourses include vegetation, hydrology, morphology, soil properties, water chemistry and groundwater supply. Floodplains, riparian buffers and in-stream processes combine to determine nutrient reduction efficiencies in watercourses, which may vary spatially and temporally in each of these interrelated environments. Lower uptake lengths¹ in first order streams suggests more efficient phosphorus retention driven by the inherent abiotic and biotic characteristics of those watercourse types (HESL, 2017). Higher order and agricultural-influenced watercourses tend retain less nutrients than more pristine or first order watercourses. Phosphorus retention efficiencies from various studies are presented in Table 2 and demonstrate the wide range of phosphorus reduction in watercourses due to site-specific factors.

Total Phosphorus Reduction Efficiency	Primary Influencing Factors Investigated	Reference
28% after restoration	3 stage restoration including streams and wetlands	Richardson et al. 2011
Duffin Creek = 92%, Nottawasaga River = 44%	Seasonality, hydrology	Hill 1982
<10% - >30%	Flow conditions	House 2003
50% of SRP	Biological uptake during spring	
60%	Downstream of sewage treatment plant	Withers and Jarvie 2008

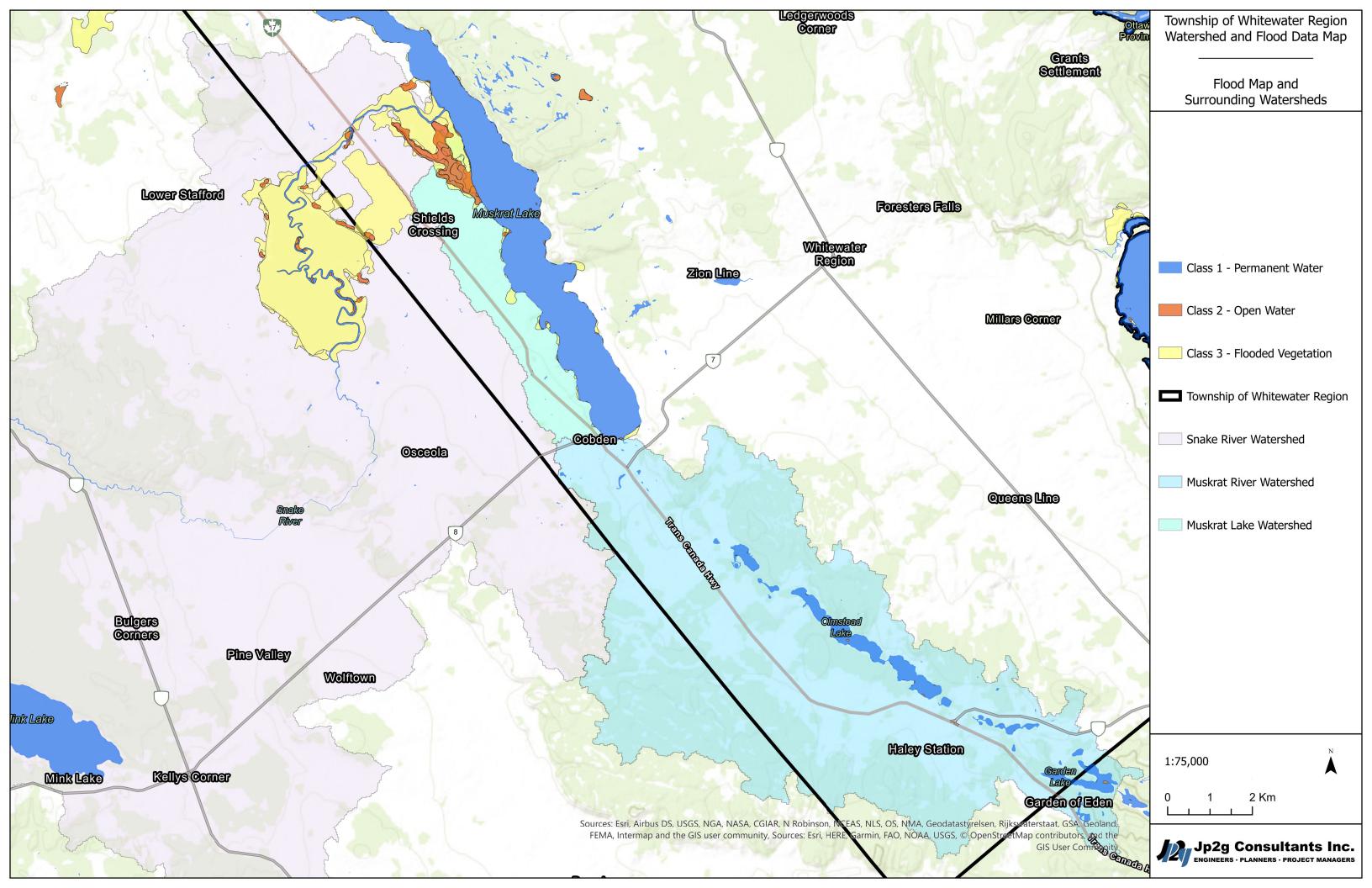
 Table 2. Phosphorus Reduction Efficiencies of Rivers from Various Studies

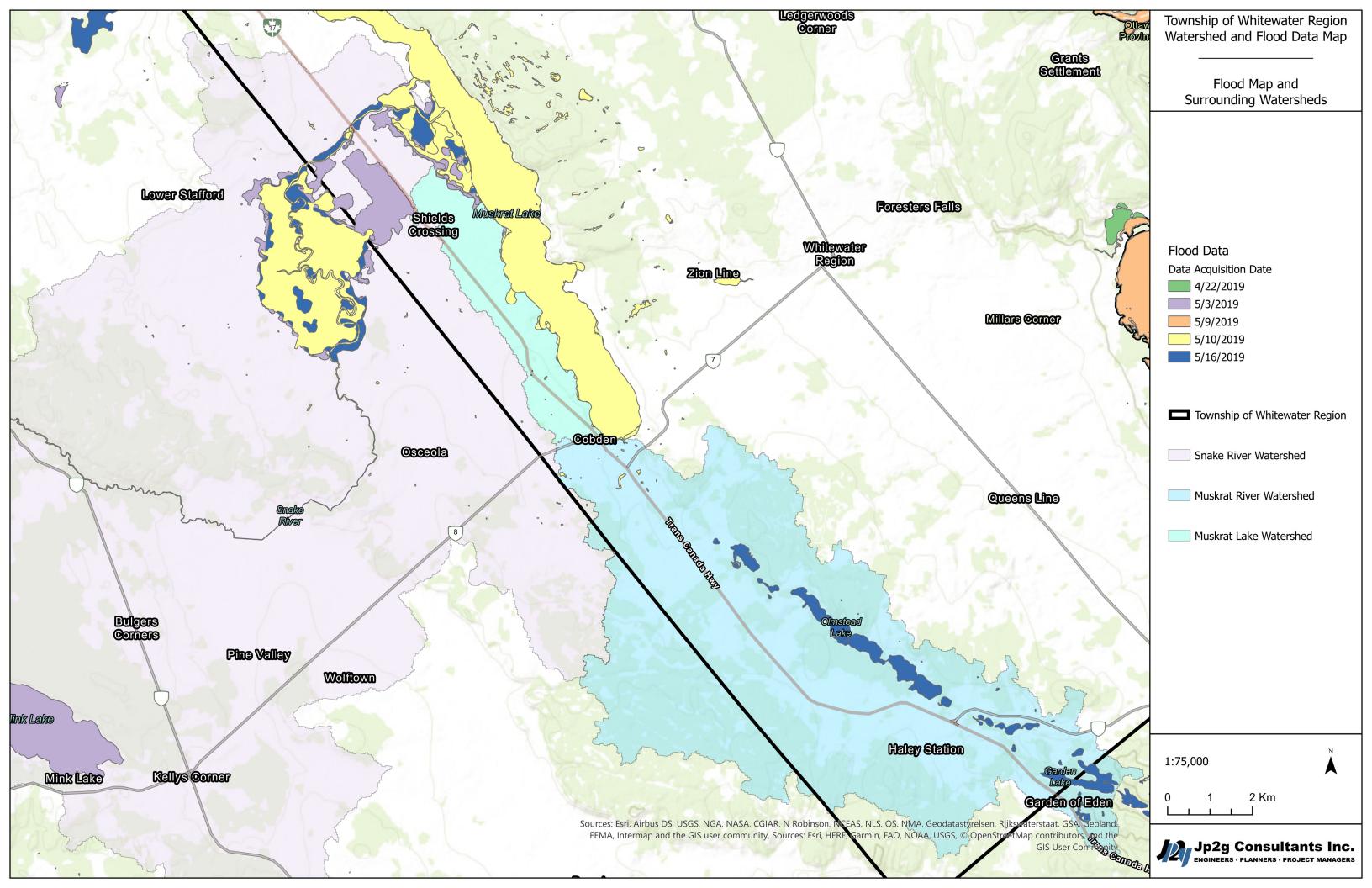
Watercourse BMPs are designed to increase nutrient retention efficiencies within the stream channel and are an important consideration for nutrient management in the Muskrat Lake watershed. Many in-stream and riparian BMPs are available such as shoreline softening, bank stabilization and channel realignment. These BMPs will be considered in future project phases.

¹ Uptake length is indicative of the phosphorus retention efficiency of a watercourse, lower uptake length suggests higher phosphorus-uptake efficiency and cycling

4.1.2 Lakes

Nutrient retention rates in lakes are affected by a variety of different processes, the most important being water residence time as greater residence time increases settling and nutrient retention. Overland flow passes through a series of lakes in the Muskrat River watershed prior to draining into Muskrat Lake. The lakes include: Garden Lake, Edmunds Lake, Blanchards Lake, Smiths Lake, Galilee Lake, Dump Lake, Eadys Lake, Pumphouse Lake, Jeffreys Lake, Olmstead Lake, Round Lake, and Astrolabe Lake. These lakes all serve as storage and treatment opportunities for sediment prior to reaching Muskrat Lake.


4.1.3 Floodplains


Nutrient processing in floodplains largely dictates nutrient concentrations in adjacent watercourses by transforming nutrient forms and loads from upstream sources and from watercourses through complex biotic and abiotic processes. Hydrology shapes the physical and biological characteristics of floodplains and is therefore the key factor that regulates the transport of nutrients, including phosphorus, between floodplains and watercourses (Hoffmann et al. 2009, Richardson et al. 2011, Newcomer Johnson et al. 2016). Hydrological connectivity and the different flow paths that operate within floodplains determine how, when and where phosphorus interacts with soils and vegetation and are therefore key considerations for assessing the potential for phosphorus retention (Hoffmann et al. 2009.). Sedimentation, which occurs along many flow paths is the main removal process for phosphorus in floodplains.

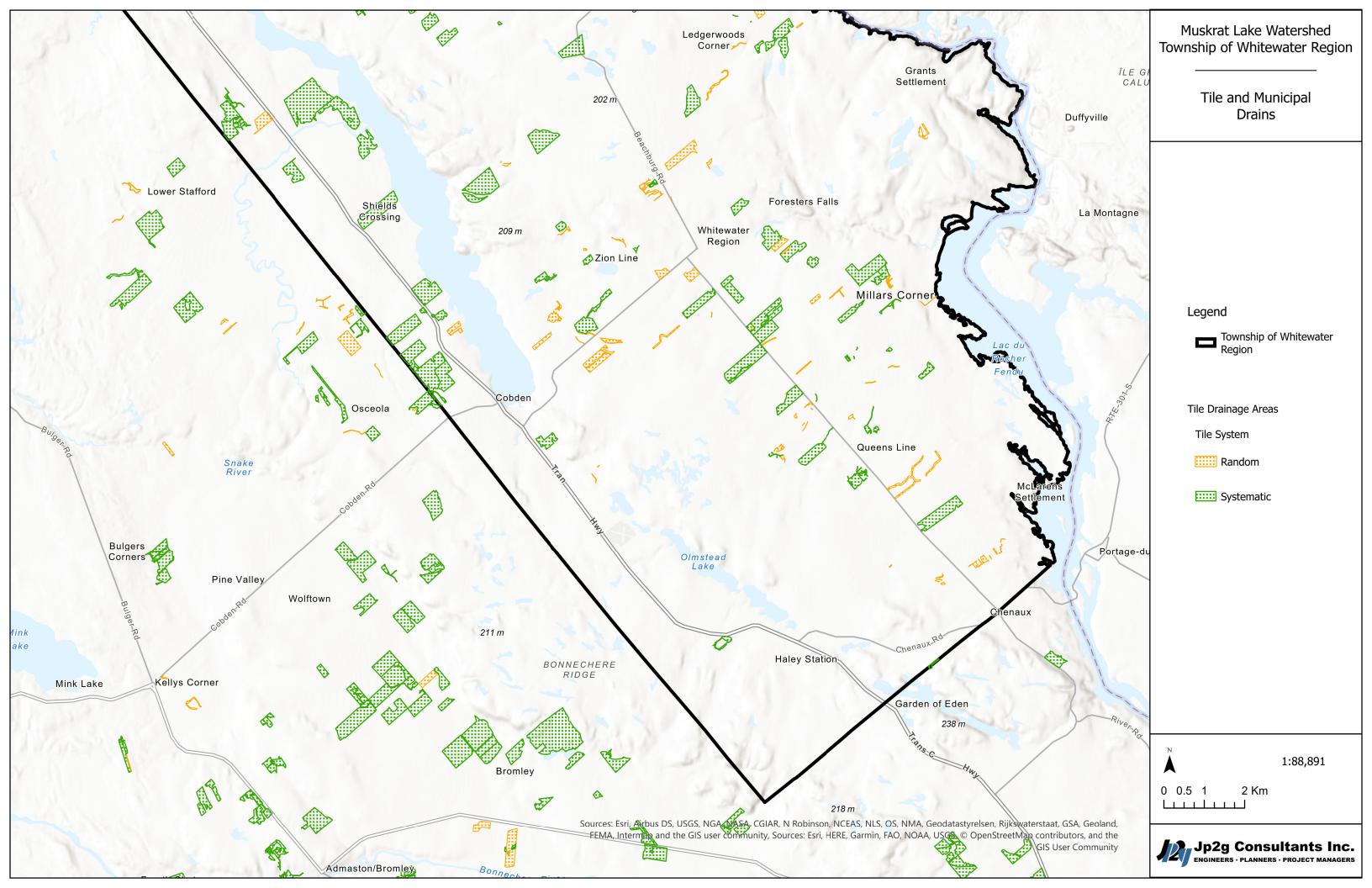
Flooding can result in the export of nutrient-enriched stormwater from terrestrial lands to adjacent low-lying lands or watercourses. Figure 5 and Figure 6 show the National Research Canada (NRCan) flooding data from 2019. Figure 5 depicts the three classes of flooding: Class 1 represents permanent water bodies, Class 2 represents flood extents that can be directly observed by satellite observation, and Class 3 represents any flood which happens in flooded forest environment. Figure 6 depicts the extent of flooding on five separate days in April and May of 2019. In the Snake River Watershed, there are significant floodplains due to the flat surrounding areas between the Snake River PSW and Muskrat Lake. Large extents of flooding were evident throughout the spring of 2019 and designated as either "Class 2 – Open Water" or "Class 3 – Flooded Vegetation".

Floodplain reconnection and flood loss reduction are potential BMPs to consider in future project phases. Floodplains have typically become disconnected to improve agricultural potential and for a host of other reasons. Areas that were cut-off by tile drains, or through channel straightening were historically included in the floodplain of a watercourse, greatly improving nutrient retention efficiencies of the riverine system as flows spread out, dissipate and deposited sediment. Flood loss reduction generally refers to improved drainage engineering where flooding is mitigated through improved drainage controls.

4.1.4 Wetlands

The natural heritage features of the Cobden PSW and Snake River PSW and an evaluation of their status as nutrient sinks or sources was assessed in section 6.0.

4.2 Artifical Stormwater Management Features


The locations of tile drains and municipal drains are provided in Figure 7.

4.2.1 Tile Drainage

Phosphorus is transported from agricultural fields to adjacent watercourses via surface flow and subsurface flow, and much of the subsurface flow is conveyed by tile drains where they exist. Tile drains are designed to remove excess water quickly from below the soil surface to avoid crop damage and decreased yields. Tile drainage impacts hydrology substantially by increasing water output, reducing surface runoff and sedimentation, and eliminating saturated areas.

Dalton (2019) noted that two controlled tile draining structures were implemented and they reduced nitrate by 65% and phosphorus by 63%. There are multiple tile drains in the study area, predominantly in the Snake River Watershed (Figure 7; Photographs 1-5). Tile drains are mapped as either "Systematic" where the drains have been installed in a crosshatched, regular pattern, or "Random" where tile drains have been installed where needed, for example to drain a wet spot in a field.

Photograph 1. Tile Drain adjacent to Highway 17 - Snake River Watershed

Photograph 2. Drain Outlet - Snake River Watershed

Photograph 4. Drain Outlet - Snake River Watershed

Photograph 5. Tile Drain Astrolabe Road - Muskrat River Watershed

4.2.2 Municipal Drainage

Municipal drains are often implemented to improve drainage from agricultural lands in a similar manner as tile drains. Based on the Artificial Drainage Mapping from the Ontario Ministry of Agriculture and Food, it was determined that there is one municipal drain in the Muskrat River Watershed, called the Haley Municipal Drain (Photographs 6 and 7). There are multiple municipal drains upstream of Whitewater Region as well which drain to the Snake River.

Photograph 6. Haley Municipal Drain

Photograph 7. Outlet to Haley Municipal Drain

5. Source Areas of Nutrient Loss

Source areas of nutrient loss were identified through multiple lines of evidence. Information on water quality concentrations and loads were combined with information on land use (field investigations and review of mapping) to determine agricultural lands where future phases of the study should be focused. These areas represent source areas of nutrient loss and therefore implementation of BMPs will have the greatest benefit to downstream receiving water systems such as the Cobden PSW, Snake River PSW and Muskrat Lake.

5.1 Water Quality Results

Total phosphorus is generally the limiting nutrient for production of algae and macrophytes in freshwater environments. Various ratios such as Total Nitrogen (TN) to Total Phosphorus (TP) have been developed to define nitrogen-and phosphorus-limited conditions and systems. Guildford and Hecy (2000) found that nitrogen-deficient growth is found where TN:TP<20 and phosphorus-deficient growth is found where TN:TP>50. Schindler et al. (2008) however noted that reducing nitrogen inputs favored nitrogen fixing cyanobacteria and that nitrogen fixation was sufficient to allow for increased biomass in proportion to TP, indicating that lake and watershed management should be focused on TP.

Muskrat Lake data from 2014 – 2018 (MLK-02) were used to calculate the TN:TP ratio in Muskrat Lake. The TN:TP ratio ranged from 10.6 to 104, with a mean value of 31.1 (Table 3). Ratios indicated that the lake was nitrogen limited on three occasions, phosphorus-limited on one occasion and not limited by either nutrient during the rest of the events according to ratios presented by Guildford and Hecky (2000).

We have focused on both TN and TP from watershed sampling locations to identify source areas of nutrient loss as a result. Future nutrient budgets will however be focused on TP because there is limited information on export coefficient modelling for TN or for TN-related reductions through BMP implementation and because reductions in TN will not likely reduce algal biomass in downstream waterbodies because of nitrogen fixing cyanobacteria as noted by Schindler et al. (2008). Future BMPs will nonetheless improve TN as well as TP as the nutrients follow similar pathways.

Date	TP (mg/L)	TN (mg/L)	TN:TP				
2014-07-09	0.005	0.52	104.0				
2015-06-15	0.014	0.33	23.6				
2015-07-14	0.014	0.38	27.1				
2015-08-11	0.02	0.5	25.0				
2015-09-30	0.021	0.48	22.9				
2016-05-24	0.018	0.47	26.1				
2016-06-14	0.015	0.58	38.7				
2016-07-12	0.018	0.48	26.7				
2016-08-17	0.014	0.48	34.3				
2016-10-03	0.01	0.45	45.0				
2017-06-05	0.017	0.6	35.3				
2017-07-10	0.028	0.46	16.4				
2017-08-16	0.019	0.45	23.7				
2017-09-20	0.018	0.43	23.9				
2018-05-15	0.046	0.62	13.5				
2018-06-19	0.012	0.39	32.5				
2018-07-10	0.011	0.34	30.9				
2018-08-13	0.036	0.38	10.6				
		Minimum	10.6				
	Maximum						
	Mean 31.						

Table 3. Total Phosphorus, Total Nitrogen and Total Nitrogen : Total Phosphorus at MLK-02.

Total Suspended Solids (TSS) was also examined because nutrients are often elevated under high TSS conditions and TSS is often elevated because of sedimentation which is likely driven by agricultural runoff at the sampling locations.

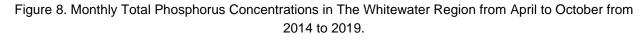
5.1.1 Total Phosphorus

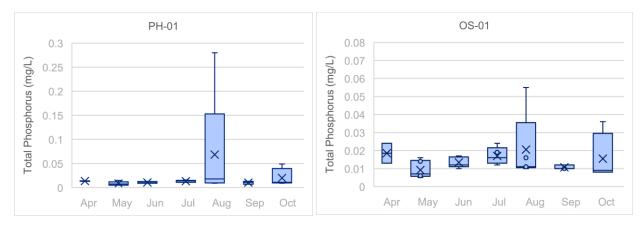
Median TP concentrations ranged from 0.011 mg/L (PH-01) and 0.012 mg/L (OS-01) to 0.178 mg/L (SC-02; Table 4). Between 2014 and 2019, sites with the greatest TP concentrations included SC-02 (median concentration of 0.178 mg/L), MKR-03 (median concentration of 0.120 mg/L) and SNR-04 (median concentration of 0.042 mg/L).

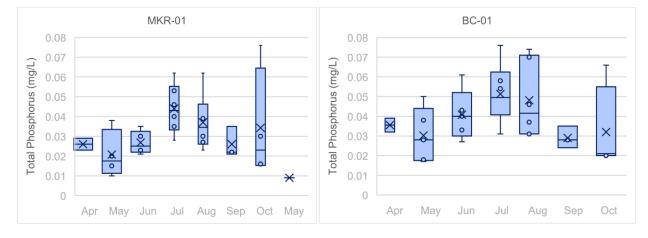
TP concentrations in the Whitewater Region in general, were highest in July or August (Figure 8). Monthly median TP concentrations were consistently greatest at SC-02 (a tributary that discharges to the Snake River PSW) ranging from 0.056 mg/L in April to 0.469 mg/L in July. Interpretation of monthly data should be viewed with caution due to differences in the number of samples available per site per month (Table 5).

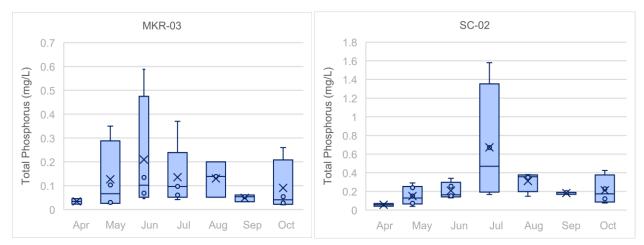
Based on linear regression analysis TP concentrations were not statistically significantly related to total daily precipitation (Table 6).

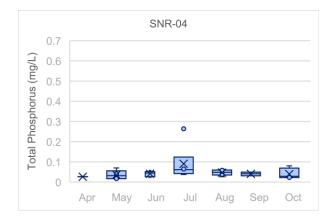
Total phosphorus concentrations exceeded the PWQO and the threshold for stream impairment developed for Mixedwood Plains Ecozone of Ontario (Chambers et al., 2012) of 0.03 mg/L at all sites on various occasions. Percent exceedances (i.e. the % of samples that exceeded the guideline of 0.03 mg/L) ranged from 7% at PH-01 and OS-01 to 100% at SC-02 (Table 7).


A review of 15 streams in agricultural watersheds in Southwestern Ontario between 2006 and 2009 found a range in TP concentrations between 0.002 to 0.129 mg/L (MOE 2012). The same study with an expanded dataset ranging from 2004 to 2009 found median concentrations ranging between 0.018 and 0.156 mg/L with median concentrations from 9 out of 15 streams exceeding the PWQO (MOE 2012). DeBues et al. (2019) noted mean TP concentrations of 0.01 to 0.044 mg/L in watersheds with 50% agricultural landcover between May and September in Lake Ontario tributaries.


Median TP concentrations measured in the Whitewater Region are similar to those found in Southern Ontario as reported by MOE (2012), while median concentrations at MKR-03 and SC-02 are higher than those presented in DeBues et al. (2019). The MOE (2012) study also found that TP concentrations were close to the annual average between July and September and high in October. This pattern is in contrast to what was observed in the Whitewater Region with low median October TP concentrations and high TP concentrations in July.


Total Phosphorus						
Sites	Mean	Median	Min	Max	Range	Number of Samples
PH-01	0.022	0.011	0.005	0.280	0.275	30
OS-01	0.015	0.012	0.005	0.055	0.050	30
MKR-01	0.032	0.029	0.009	0.076	0.067	31
BC-01	0.040	0.037	0.017	0.076	0.059	31
MKR-03	0.120	0.061	0.020	0.588	0.568	25
SC-02	0.263	0.178	0.039	1.580	1.541	28
SNR-04	0.050	0.042	0.017	0.264	0.247	32
SC-01	0.022	0.085	0.017	0.785	0.768	33
SNR-03	0.015	0.034	0.005	0.054	0.049	32


Table 4. Total Phosphorus Summary Stats for the Whitewater Region for April to October 2014 to 2019.



Site	April	May	June	July	August	September	October	Total
OS-01	2	6	5	5	5	3	4	30
MKR-01	2	5	5	6	6	3	4	31
BC-01	2	5	5	6	6	3	4	31
MKR-03	2	4	4	5	3	3	4	25
PH-01	2	6	5	5	5	3	4	30
SC-02	2	6	5	4	4	3	4	28
SNR-04	2	5	6	6	6	3	4	32

Table 5. Number of Monthly Samples Available per Site.

Table 6. Linear Regression Results for Total Phosphorus and Precipitation.

Site	r²	Р
PH-01	0.0048	0.732
OS-01	0.0008	0.890
MKR-01	0.0163	0.517
BC-01	0.0320	0.372
MKR-03	0.0386	0.393
SC-02	0.0001	0.955
SNR-04	0.0083	0.646

Table 7. Exceedance of PWQO and Threshold for Impairment for Phosphorus (0.030 mg/L) in the Whitewater Region.

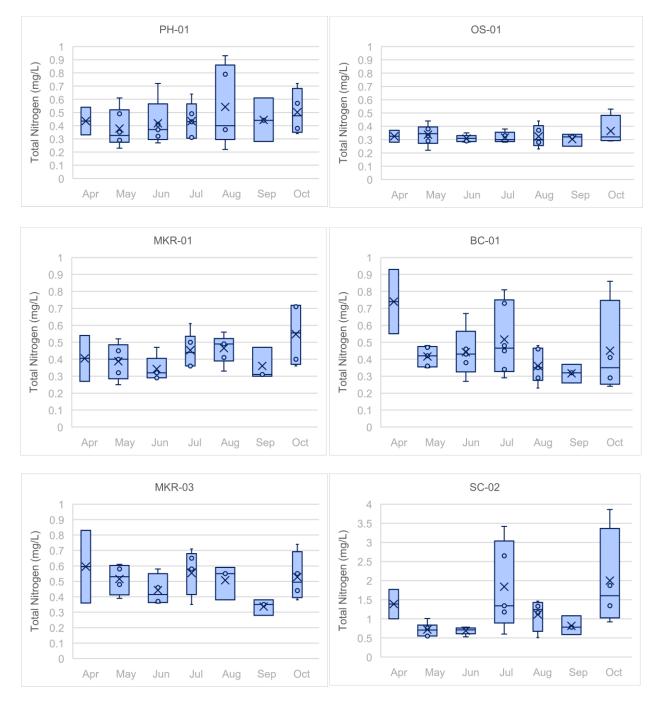
Sites	Exceedance	Count	Percent Exceedance
PH-01	2	30	7%
OS-01	2	30	7%
MKR-01	12	31	39%
BC-01	22	31	71%

Sites	Exceedance	Count	Percent Exceedance
MKR-03	20	25	80%
SC-02	28	28	100%
SNR-04	23	32	72%
SC-01	31	34	91%
SNR-03	17	32	53%

5.1.2 Total Nitrogen

Median TN concentrations were similar at five of the seven sites and ranged from 0.31 mg/L (OS-01) to 0.48 mg/L (MKR-03), while median concentrations at SNR-04 (0.65 mg/L) and SC-02 (0.92 mg/L) were higher (Table 8). Median monthly TN concentrations at four (PH-01, MKR-01, SC-02, SNR-04) of the seven sites in the Whitewater Region were highest in October, and highest in May at OS-01, BC-01 and MKR-03 (Figure 9). As noted with TP monthly samples varied between sites, interpretation of monthly data should be viewed with caution due to differences in the number of samples available per site per month (Table 9).

TN concentrations were not statistically significantly related with total daily precipitation (Table 8).


TN concentrations exceeded the threshold for stream impairment (1.10 mg/L) developed for the Mixedwood Plains Ecozone of Ontario (Chambers et al., 2012) at SC-02 (38% of samples) and SNR-04 (10% of samples, Table 11). SC-02, SNR-04 and MKR-03 had high concentrations of both TN and TP.

Between 1992-2001 the U.S. EPA (2007) investigated 133 streams in agricultural watersheds across the United States and found that 78% of streams had mean TN concentrations of 2 mg/L or greater during average flow conditions. Only one site in the Whitewater Region had a mean TN concentration greater than 2 mg/L suggesting concentrations in the area are relatively low compared to other agricultural watersheds in North America.

Table 8. Total Nitrogen Concentrations in the Whitewater Region from April to October from 2014 to
2019.

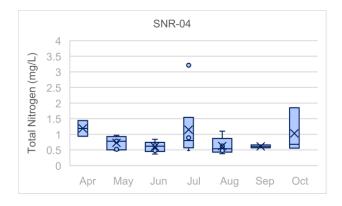

Site	Mean	Median	Min	Мах	Range	Count
PH-01	0.45	0.39	0.22	0.93	0.71	30
OS-01	0.33	0.31	0.22	0.53	0.31	30
MKR-01	0.43	0.4	0.25	0.72	0.47	31
BC-01	0.45	0.41	0.23	0.93	0.7	31
MKR-03	0.50	0.48	0.28	0.83	0.55	25
SC-02	1.19	0.92	0.51	3.86	3.35	29
SNR-04	15.4	0.65	0.37	3.21	2.84	30

Figure 9. Monthly Total Nitrogen Concentrations in the Whitewater Region from 2014 to 2019.

Note: The y-axis scale was increased from 1.00 mg/L to 4.00 mg/L for SC-02 and SNR-04 to accommodate the higher monthly concentrations.

Site	April	May	June	July	August	September	October	Total
OS-01	2	6	5	5	5	3	4	30
MKR-01	2	5	5	6	6	3	4	31
BC-01	2	5	5	6	6	3	4	31
MKR-03	2	4	4	5	3	3	4	25
PH-01	2	6	5	5	5	3	4	30
SC-02	2	6	5	5	4	3	4	29
SNR-04	2	5	6	6	5	3	3	30

Table 9. Number of Monthly Samples Available per Site.

Table 10. Linear Regression Results for Total Nitrogen and Precipitation.

Site	r ²	Р
PH-01	0.0163	0.525
OS-01	0.0088	0.648
MKR-01	0.0178	0.506
BC-01	0.0842	0.142
MKR-03	0.0201	0.539
SC-02	0.0060	0.713
SNR-04	0.0067	0.685

Table 11. Exceedance of Total Nitrogen Threshold for Stream Impairment (1.10 mg/L) in the Whitewater Region.

Site	Exceedance	Count	Percent Exceedance
PH-01	0	30	0%
OS-01	0	30	0%
MKR-01	0	31	0%

Site	Exceedance	Count	Percent Exceedance
BC-01	0	31	0%
MKR-03	0	25	0%
SC-02	11	29	38%
SNR-04	3	30	10%

5.1.3 Total Suspended Solids

TSS concentrations in the Whitewater Region were variable ranging from 0.5 mg/L (PH-01, OS-01, MKR-03², SC-02) to 77.4 mg/L (SC-02, Table 12). Median suspended sediment concentrations were low and ranged from 1.3 mg/L (OS-01) to 5.3 mg/L (BC-01).

There was no month that consistently contained high suspended sediment concentrations in the Whitewater Region (Figure 10). As previously noted, number of monthly samples varied with site (Table 13). Suspended sediment concentrations were not statistically significantly related to total daily precipitation (Table 14).

Suspended solid concentrations had a positive and significant (p<0.001) relationship with TP concentrations at MKR-01 (Figure 11), BC-01 (Figure 12) and MKR-03 (Figure 13) while the relationship was close to statistical significance at SC-02 (Figure 14, p = 0.05). It should be noted that the significantly positive relationship between TSS and TP occurs at three sites in close proximity to one another suggesting there is a shared driver such as overland runoff. Strong positive relationships between TSS and TP frequently occur in agricultural areas however, pasture land use varies between the three sites and is limited at BC-01 (6.5% of upstream land use) and MKR-03 (4.8% of upstream land use, Section 5.2).

Table 12. Suspended Solids Concentrations in the Whitewater Region from April to October from 2014	to
2019.	

	Total Suspended Solids (mg/L)								
Site	Mean	Min	Max	Range	Median	Stdev	Count		
PH-01	2.2	0.5	5.4	4.9	1.7	1.2	29		
OS-01	2.9	0.5	36.5	36.0	1.3	6.5	30		
MKR-01	3.8	1.2	17.7	16.5	3.1	2.9	31		
BC-01	5.4	0.6	18.3	17.7	5.3	4.0	31		
MKR-03	2.2	0.5	11.4	10.9	1.6	2.3	24		
SC-02	9.9	0.5	77.4	76.9	2.6	17.1	29		
SNR-04	5.0	0.8	21.3	20.5	2.7	5.3	32		

Notes: Range is the maximum minus the minimum. StDev is the standard deviation.

² A TSS value at station MKR-03 collected in July 2015 (33.8 mg/L) was unusually high (greater than the mean plus three times the standard deviation, 23.6 mg/L) and therefore removed from analysis.

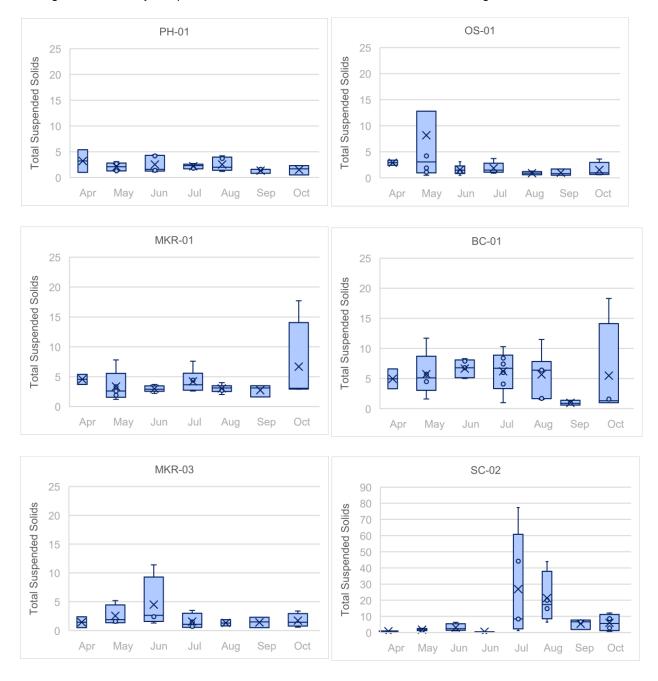
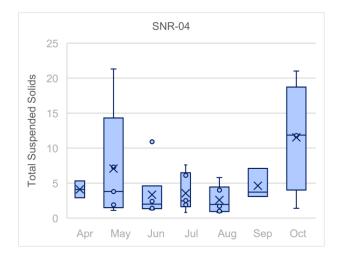



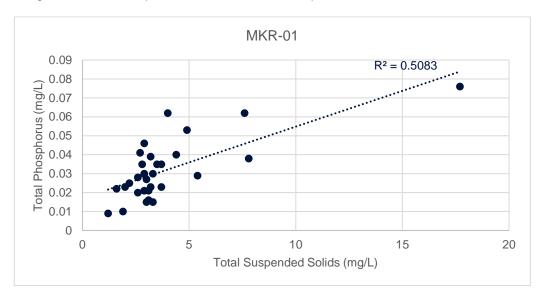
Figure 10. Monthly Suspended Solids Concentrations in the Whitewater Region from 2014 to 2017.

Note: The y-axis scale was increased from 25 mg/L to 90 mg/L for SC-02 to accommodate the higher monthly concentrations.

Site	April	Мау	June	July	August	September	October	Total
OS-01	2	6	5	5	5	3	4	30
MKR-01	2	5	5	6	6	3	4	31
BC-01	2	5	5	6	6	3	4	31
MKR-03	2	4	4	4	3	3	4	24
PH-01	2	6	5	5	5	3	4	30
SC-02	2	6	5	5	4	3	4	29
SNR-04	2	5	6	6	6	3	4	32

Table 13. Number of Monthly Samples Available per Site.

Table 14. Linear Regression Results for Suspended Sediments and Precipitation.


Site	r²	Р
PH-01	0.0163	0.525
OS-01	0.0088	0.648
MKR-01	0.0178	0.506
BC-01	0.0842	0.142
MKR-03	0.0220	0.524
SC-02	0.0060	0.713
SNR-04	0.0067	0.685

Site	r ²	Р
PH-01	0.0046	0.722
OS-01	0.0002	0.939
MKR-01	0.5080	<0.001
BC-01	0.5180	<0.001
MKR-03	0.6650	<0.001
SC-02	0.1400	0.05
SNR-04	0.0033	0.756

Table 15. Linear Regression Results for Total Phosphorus and Suspended Solids.

Figure 11. Total Suspended Solid vs. Total Phosphorus Concentrations at MKR-01.

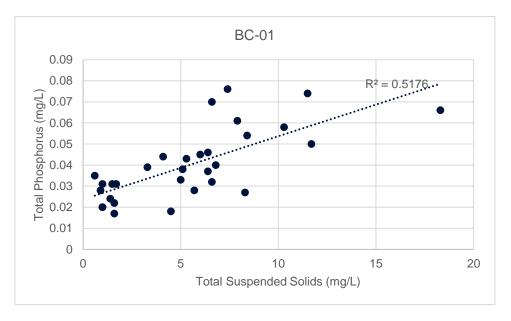
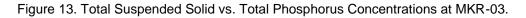
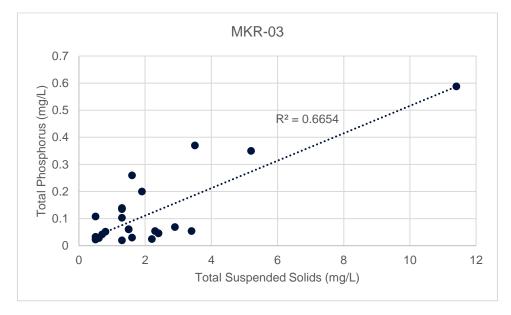




Figure 12. Total Suspended Solid vs. Total Phosphorus Concentrations at BC-01.

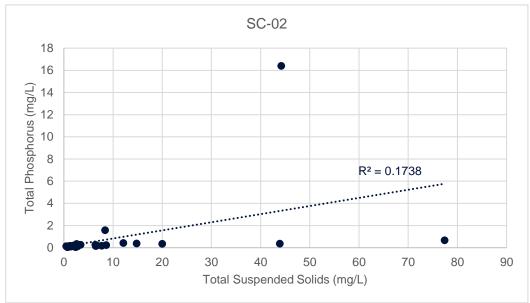


Figure 14. Total Suspended Solid vs. Total Phosphorus Concentrations at SC-02.

5.1.4 Nutrient Loads

5.1.4.1 Flow

The Ontario Flow Assessment Tool (OFAT) was used to calculate mean annual flows for each of the seven Whitewater Region sampling stations (Table 16). Catchment sizes ranged considerably from 1,030 ha (BC-01) to 37,980 ha (SNR-04; Table 16). Flows increased from upstream (e.g., PH-01 with a mean annual flow of 0.15 m³/s) to downstream in the watershed (e.g., SNR-04 with a mean annual flow of 3.63 m³/s).

Table 16. OFAT Mean Annual Flow Values at Water Quality Monitoring Sites within Whitewater Region.

Site	Catchment Size (ha)	Mean Annual Flow (m³/s)
PH-01	PH-01 1,350 0.15	
OS-01	3,810	0.40
MKR-01	5,480	0.56
MKR-03	5,490	0.66
BC-01	1,030	0.10
SC-02	2,130	0.20
SNR-04	37,980	3.63

Annual TP and TN loads were calculated for the seven sites using the mean annual flows calculated using OFAT and site median concentrations.

5.1.4.2 Total Phosphorus Loads

TP loads ranged from 52 kg/year at PH-01 to 4,751 kg/year at SNR-04 while TP loads per ha ranged from 0.04 kg/ha/yr (PH-01 and OS-01) to 0.53 kg/ha/yr (SC-02). SNR-04 (4,751 kg/yr), MKR-03 (1,270 kg/year) and SC-02 (1,123 kg/year) had the largest annual TP loads (Table 17), and the highest median TP concentrations.

Site	kg/year	kg/ha/yr
PH-01	52	0.04
OS-01	151	0.04
MKR-01	512	0.09
BC-01	117	0.11
MKR-03	1,270	0.23
SC-02	1,123	0.53
SNR-04	4,751	0.13

Table 17. Mean Annual Total Phosphorus Loads in the Whitewater Region.

5.1.4.3 Total Nitrogen Loads

Total nitrogen loads ranged from 1,293 kg/year at BC-01 to 76,699 kg/year at SNR-04 and 1.03 kg/ha/yr (OS-01) to 2.72 kg/ha/yr (SC-02). Higher TN concentrations at SNR-04 (median concentration of 0.92 mg/L) in combination with high flows (3.63 m³/s) resulted in the largest annual TN load calculated in the Whitewater Region (Table 8, Table 16, Table 18)

Table 18. Mean	Annual Total Nitrogen Loads for the Whit	tewater Region.

Site	kg/year	kg/ha/yr
PH-01	1,845	1.37
OS-01	3,910	1.03
MKR-01	7,064	1.29
BC-01	1,293	1.26
MKR-03	9,991	1.82
SC-02	5,803	2.72
SNR-04	76,699	2.02

5.2 Land Use

5.2.1 OFAT Mapping

The amount of agricultural lands within the catchment of each water quality sampling location was calculated using the Ontario Flow Assessment Tool (Table 19). Corresponding figures are provided in Appendix B. The amount of agricultural land ranged from 4.07 km² (PH-01) to 126 km² (SNR-04). Percent

of agricultural land within each catchment was similar for most sites (30.4% to 42%) and highest at SC-02 (67.8%).

Site	Agriculture and Undifferentiated Rural Land Use (km²)		
	km²	%	
BC-01	4.33	42.0	
MKR-01	21.0	32.2	
MKR-03	16.7	30.4	
OS-01	12.0	31.5	
PH-01	4.07	30.1	
SC-02	14.5	67.8	
SNR-04	126	33.1	

Table 19. The Amount and Percentage of Agricultural (and undifferentiated) Land within the Catchment of
each Water Sampling Location.

5.2.2 Within 1 km of Water Quality Sampling Locations

Dalton (2019) characterized land use in a 1000 m x 200 m wide area (100 m on either stream/river bank) using satellite imagery data. Percentages of annual crop land (primarily corn and soybean crops), pasture/forage land (pasture land and land that is periodically cultivated with grasses and perennial crops such as alfalfa and clover for hay, pasture and seed), natural habitat and developed land (road, buildings, paved surfaced, urban/suburban areas and associated vegetation) were calculated and are presented in Table 20 and in Appendix C. Annual crop land adjacent to most sites was 0% except for SNR-04 (10.3%) and SC-02 (27.4%). Pasture/forage land ranged from 0% (SNR-04) to 24% (MKR-01).

Site	Annual Crop Land (%)	Natural (%)	Pasture/Forage (%)	Developed (%)
BC-01	0.0	90.4	3.2	6.4
OS-01	0.0	91.7	5.7	2.5
MKR-01	0.0	71.2	24.0	4.8
PH-01	0.0	90.9	3.5	5.6
MKR-03	0.0	91.1	0.7	8.3
SNR-04	10.3	87.7	0.0	2.1
SC-02	27.4	66.8	2.4	3.4

Table 20. Land Uses Adjacent to Water Sampling Locations

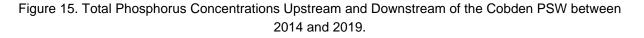
Cobden and Snake River Provincially Significant 6. Wetlands

Wetlands are among the most productive and diverse habitats which provide a variety of social and economic needs in Ontario such as wildlife habitat, fish habitat, flood control, erosion reduction, groundwater recharge and discharge, climate change mitigation and resilience, recreation and tourism, food source and water quality improvement. Provincially Significant Wetlands have been determined by the Ministry of Natural Resources and Forestry as being the most valuable based on the Ontario Wetland Evaluation System and the standardized approach for evaluating the biological, social, hydrological and species features components of the wetlands.

A complex array of biogeochemical processes within wetlands act to trap and transform incoming nutrients, retaining them in the system for days to years, depending on biotic and abiotic conditions. Nutrient assimilation occurs through biological uptake, sedimentation, adsorption, precipitation and accumulation of organic matter. The functioning of wetlands as nutrient sinks is influenced by a wide variety of factors including vegetation, soil properties, wetland shape and size, hydrologic fluctuations, surrounding land uses, loading rates, hydraulic retention time, and seasonality.

Overall, phosphorus removal efficiencies vary tremendously. Some studies reported a net increase in total phosphorus export or no removal (Geosyntec Consultants, Inc. and Wright Water Engineers, Inc. 2014; Chouinard et al. 2015), while others documented removal efficiencies of over 90% (Reddy et al. 1999; Chouinard et al. 2015. The high variability in phosphorus removal efficiencies is consistent with the wide range of possible biotic and abiotic conditions that influence phosphorus cycling in different wetlands, the dynamic nature of those conditions, and the ability of monitoring programs to capture them (e.g., of sufficient frequency to capture seasonal changes, interannual variability in weather conditions and the full range of flow conditions including floods). TP and TN concentrations and loads upstream and downstream of the Cobden and Snake River PSWs were calculated on a seasonal and annual basis to determine if the two PSWs were sources or sinks of TP and TN.

6.1 Cobden PSW


The Cobden PSW is a combination of swamp (39%) and marsh (61%) occupying 91.5 hectares of land. The site is 70% riverine and 30% lacustrine (Buckland and Beaudette, 1985a). The catchment upgradient of the outflow is 54 km² and 50% of the wetland has organic soils (Buckland and Beaudette, 1985a). Blanding's Turtle (threatened) and Spiny Softshell (threatened) have been observed within the PSW and within 100 m of the site (Muncaster Environmental Planning and Jp2g Consultants Inc., 2016). The wetland serves as a breeding or feeding habitat for Black Tern, Northern Harrier, and Marsh Wren and Pintail, Wigeon use the wetland during migration (Buckland and Beaudette, 1985a) and it's a spawning ground for Northern Pike (Muncaster Environmental Planning and Jp2g Consultants Inc., 2016). In 1985 the site was considered moderately disturbed due to roads, drainage, filling and the discharge of treated effluent from the Cobden Waste Water Treatment Plant (WWTP (located on a separate tributary not monitored in this study), Buckland and Beaudette, 1985a).

6.1.1 **Total Phosphorus**

TP concentrations at MKR-01, a station located on the Muskrat River upstream of the Cobden PSW and the discharge of Buttermilk Creek, and MKR-03, a station within the wetland complex downstream of Buttermilk Creek and MKR-01, were compared to determine if the Cobden PSW was acting as a sink or source of TP and TN. In general, the Cobden PSW acted as a TP source. TP concentrations were higher at the downstream site (MKR-03) compared to the upstream site (MKR-01) on 23 out of 25 occasions (Figure 15).

The differences in event-based TP concentrations were calculated and the median value for each month is presented in Table 21. TP concentrations increased marginally in April and October (0.009 mg/L) with greater changes noted in September (0.026 mg/L), July (0.035 mg/L), May (0.052 mg/L), June (0.077 mg/L) and August (1.00 mg/L). Mean annual TP loads were also greater downstream of the PSW (1,270 kg/year) compared to upstream (512 kg/year).

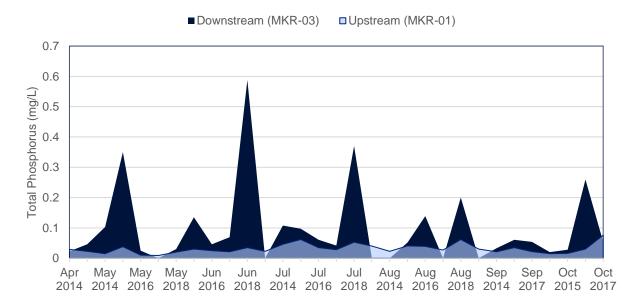
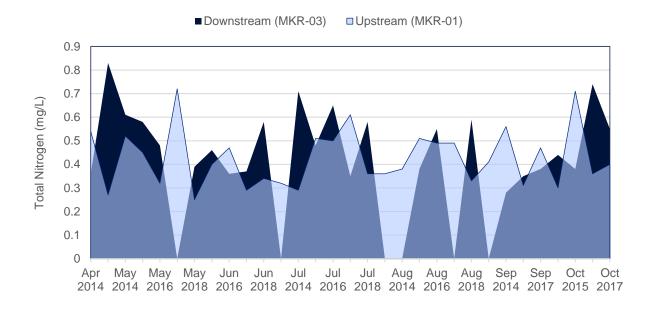
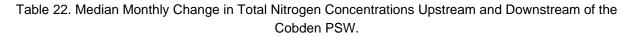


Table 21. Median Monthly Change in Phosphorus Concentrations in the Cobden PSW.

Month	Change in TP (mg/L)		
April	+0.009		
Мау	+0.052		
June	+0.077		
July	+0.035		
August	+0.100		


210728_210005_Cobden SWM Background Review.docx


September	+0.026
October	+0.009

6.1.2 Total Nitrogen

Concentrations of TN were higher downstream at MKR-03 than MKR-01 on 18 out of 25 sampling occasions (Figure 15) indicating that the Cobden PSW generally acted as a source of TN. TN concentrations increased by 0.06 mg/L (August) to 0.19 mg/L (April), except in September when median concentrations decreased by 0.09 mg/L (Table 22, Figure 16). The mean annual TN load was also greater downstream (1,270 kg/yr) than upstream (512 kg/yr).

Figure 16. Total Nitrogen Concentrations Upstream and Downstream of the Cobden PSW between 2014 and 2019.

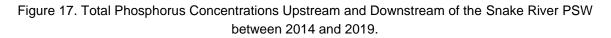
Month	Change in TN (mg/L)		
April	+0.19		
May	+0.14		
June	+0.07		
July	+0.15		
August	+0.06		
September	-0.09		

October	+0.15

6.2 Snake River PSW

The Snake River PSW is a mixture of deciduous swamp (84%) and marsh (16%) (MOE 2003) making up 879 hectares of land. The catchment basin above the wetland outflow is 302 km². The PSW is 95% riverine and 5% lacustrine at the river mouth. Soils in the wetland are a mixture of clays, loams or silts (35%), organic (55%) and undesignated (10%, Buckland and Beaudette, 1985b).

Migratory birds, raptors, marsh wren and black-billed cuckoos frequent the PSW (MOE 2003) and it is a known nesting area for black tern (Buckland and Beaudette, 1985b). The PSW is also known as critical spawning habitat for northern pike (Dillion, 1995). It is susceptible to frequent flooding (MOE 2003) and has been disturbed by roads, drainage and railroad tracks (Buckland and Beaudette, 1985b). MNR (2000) noted that the surrounding agricultural land use has impacted the nutrient status, plant diversity and abundance of the wetland.


6.2.1 Total Phosphorus

Several tributaries flow into the Snake River PSW. Water quality samples have been collected between April and October of 2014 and 2019 for three of these tributaries: SC-01, SC-02 and SNR-03. Water quality samples were also collected from the outlet of the Snake River PSW (SNR-04). Upstream concentrations were compared to downstream concentrations and upstream cumulative loads compared to downstream loads to evaluate if the Snake River PSW was a TP or TN sink between 2014 and 2019.

Average TP concentrations were greater upstream of the Snake River PSW compared to downstream on 31 out of 34 occasions indicating that the Snake River PSW was a sink for TP (Figure 17). The differences in event-based TP concentrations were calculated and the median value for each month is presented in Table 23. TP concentrations declined by 0.015 mg/L in April, 0.045 mg/L in May, 0.07 mg/L in June and between 0.102 mg/L and 0.135 mg/L in the remaining months.

The mean annual TP load downstream of the Snake River PSW (4,751kg/year) was slightly greater than the upstream load (4,589 kg/year). The greater load is due to the higher flow (3.63 m³/s) downstream of the PSW compared to the three upstream sites (0.13 m³/s at SC-01 + 0.2 m³/s at SC-02 + 2.91 m³/s at SNR-03 = 3.24 m^3 /s). It should be noted that not all tributaries discharging to the Snake River PSW were monitored and therefore concentrations and flow entering the PSW were likely higher than those captured by the monitoring program and reported here. The Snake River PSW was a TP sink between 2014 and 2019 based on the decrease in TP concentrations downstream of the wetland.

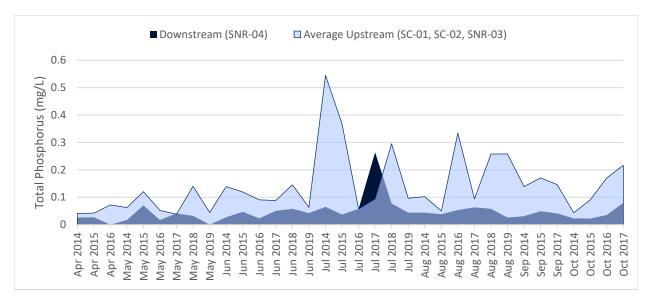


 Table 23. Median Monthly Change in Phosphorus Concentrations Upstream and Downstream of the

 Snake River PSW.

Month	Change in TP (mg/L)		
April	-0.015		
Мау	-0.045		
June	-0.070		
July	-0.135		
August	-0.129		
September	-0.108		
October	-0.102		

6.2.2 Total Nitrogen

The Snake River PSW acted primarily as a sink for TN as average TN concentrations at the downstream sites were lower than the upstream site on 30 out of 34 sampling occasions (Figure 18). The differences in event-based TN concentrations were calculated and the median value for each month is presented in Table 24. Monthly median decreases in concentration from upstream to downstream ranged from 0.13 mg/L (May) to 0.80 mg/L (August, Table 24). The total upstream load (125,201 kg/yr) was substantially greater than the downstream load (76,699 kg/yr) providing further evidence that the Snake River PSW acted as a TN sink.

Figure 18. Total Nitrogen Concentrations Upstream and Downstream of the Snake River PSW between 2014 and 2019.

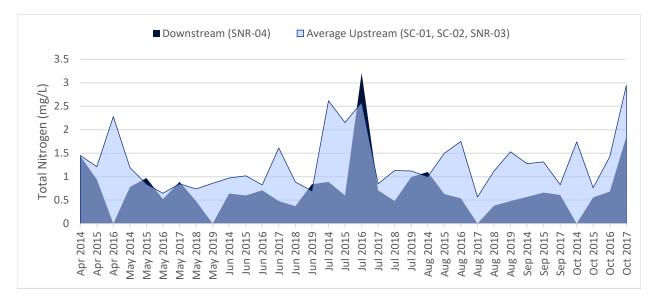


Table 24. Monthly Mean Total Nitrogen Concentrations Upstream and Downstream of the PSWs.

Month	Change in TN (mg/L)		
April	+0.14		
Мау	+0.13		
June	+0.38		
July	+0.40		
August	+0.80		
September	+0.66		
October	+0.75		

7. Conclusions

7.1 Preliminary Consultation

Preliminary consultation has been initiated through consultation with select groups and will advance after completion of this report through project notification focus group engagement and micro meetings.

7.2 Existing Stormwater Management

A multitude of lakes, rivers and wetlands are located in the study area which influence nutrient cycling between the watershed and Muskrat Lake. These natural heritage features will be considered during future project phases when selecting and implementing of BMPs which aim to improve nutrient retention in these systems. Artificial SWM is limited to three tile drains and one municipal drain in the study area.

In the Snake River Watershed, there are significant floodplains due to the flat surrounding areas between the Snake River PSW and Muskrat Lake. Large extents of flooding were evident throughout the spring of 2019 and designated as either "Class 2 – Open Water" or "Class 3 – Flooded Vegetation".

7.3 Source Areas of Nutrient Loss

Nutrients were similar or slightly higher than other agricultural-dominated watersheds in Ontario. Phosphorus concentrations were highest in the summer, TN was highest in the spring and fall, and neither nutrient concentration was statistically significantly related to precipitation. Total suspended solid concentrations were low and significantly related to TP at the three sites located in the Cobden PSW which could be driven by upstream overland runoff.

Median TP and TN concentrations, as well as TP and TN loads/ha were all highest at SC-02 which was also the catchment with the highest percentage of agricultural lands and annual crop land within 1 km (Table 25). The next most nutrient-enriched sites were MKR-03 and SNR-04.

Sites	Median TP	TP Load/ha	Median TN	TN Load/ha
PH-01	0.011	0.04	0.39	1.37
OS-01	0.012	0.04	0.31	1.03
MKR-01	0.029	0.09	0.40	0.29
BC-01	0.037	0.11	0.41	1.26
MKR-03	0.061	0.23	0.48	1.82
SC-02	0.178	0.53	0.92	2.72
SNR-04	0.042	0.13	0.65	2.02

Table 25. Priority Areas Based on Concentrations and Loads.

Note: A green, yellow, red, colour scheme is used to designate sites as hot spots based on concentrations and loads. Sites with low concentrations or loads are highlighted in green, intermediate values are highlighted in yellow and the highest values are highlighted in red.

7.4 Cobden and Snake River PSWs

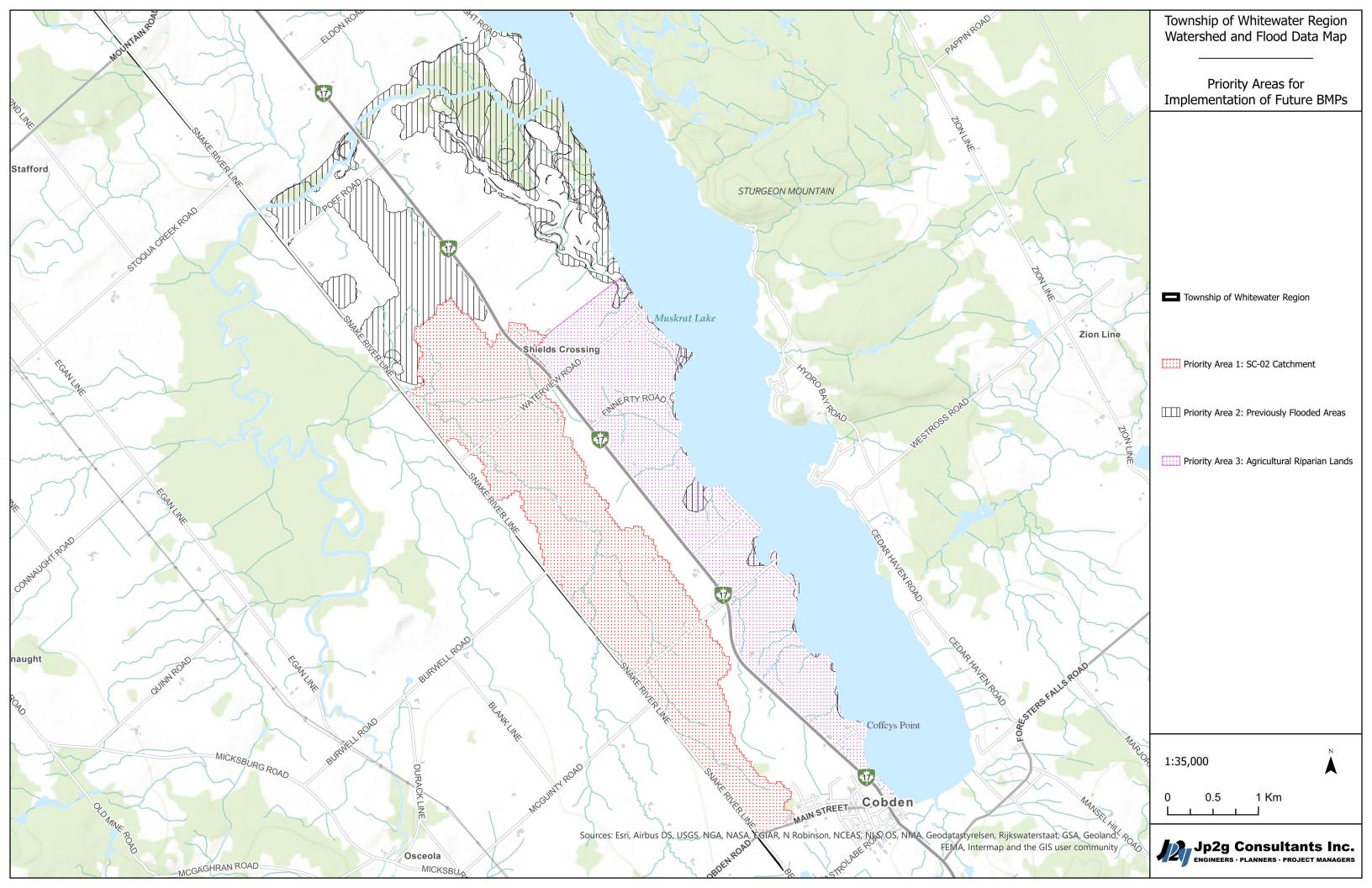
The Cobden and Snake River both support a wide variety of natural heritage features and functions. The Snake River PSW consistently acts as a nutrient sink with the greatest nutrient retention occurring in the summer and fall. The Cobden PSW acts as a nutrient source but the assessment of TP retention in the Cobden PSW was limited because the downstream water sampling location was located in the middle of the wetland, thereby limiting the spatial assessment.

7.5 Identification of Priority Areas

We identified the following priority areas for future BMP implementation based on the results of the study (Figure 19):

1. SC-02 Catchment

Nutrient concentrations and loads/ha were the highest at SC-02 so future project phases should be focused in this area to reduce nutrient loading and nutrient concentrations in the Snake River PSW, Snake River and downstream Muskrat Lake. It should be noted however that the nutrients will be transformed in the PSW through a variety of biogeochemical processes and therefore a reduction in nutrient loads will not equal those that are displaced from Muskrat Lake.


2. Previously Flooded Areas

Flooding results in significant nutrient loading to downstream receiving waterbodies. Class two and three lands that flooded in the spring of 2019 should be assessed during future project phases in an attempt to lower nutrient loading from these areas and improve agricultural productivity. The majority of these previously flooded areas are located between the Snake River PSW and Muskrat Lake along the western shore of Muskrat Lake.

3. Muskrat Lake Riparian Lands

The Muskrat Lake watershed includes a number of agricultural lands that drain directly into the western shore of Muskrat Lake and runoff is not afforded phosphorus retention in watercourses, wetlands or other lakes. These lands should be examined as part of future project phases. Many of these agricultural operations appear to have little riparian buffer between cropland and the shoreline of Muskrat Lake.

8. References

AECOM Canada Ltd. 2009. Cobden Source Water Study: Categorizing Risks to Drinking Water. Prepared for The Corporation of the Township of Whitewater Region.

Buckland, L. and S. Beaudette. 1985a. Wetland Data Record. Cobden Wetland.

Buckland, L. and S. Beaudette. 1985b. Wetland Data Record. Snake River Wetland.

- Chambers, P.A., D.J. McGoldrick, R.B. Brua, C. Vis, J.M. Culp, G.A. Benoy, 2012. Development of environmental thresholds for nitrogen and phosphorus in streams. Journal of Environmetnal Quality 41:7-20.
- Chouinard, A., B. C. Anderson, B. C. Wootton and J. J. Huang. 2015. Comparative study of cold-climate constructed wetland technology in Canada and northern China for water resource protection. Environmental Reviews 23: 367-381.
- Dalton, R.L. 2019. Muskrat Lake Watershed 2017-2017 Water Quality.
- DeBues, M.J., Eimers, M.C., Watmough, S.A., Mohamed, M.N., Mueller, J. 2019. Stream nutrient and agricultural land-use trends from 1971 to 2010 in Lake Ontario tributaries. Journal of Great Lakes Research. 45: 752-761.
- Dillion Consulting Limited. March 17, 1995. Final Technical Reports: Highway 17 Haley Station to Meath Hill Environmental Assessment and Route Planning Study.
- Geosyntec Consultants, Inc. and Wright Water Engineers, Inc. 2014. International Stormwater Best Management Practices (BMP) Database Pollutant Category Statistical Summary Report. Solids, Bacteria, Nutrients, and Metals. Prepared under support from WERF, FHWA, EWRI/ASCE and USEPA. December.
- Guildford, S., and Hecky, R.E. 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnology and Oceanography. 45(6): 1213-1223.
- HESL. 2014. Managing New Urban Development in Phosphorus-Sensitive Watersheds. Prepared for Nottawasaga Valley Conservation Authority.
- Hill, A.R. 1982. Phosphorus and Major Cation Mass Balances for Two Rivers During Low Summer Flows. Freshwater Biology 12:293-304.
- Hoffmann, C. C., C. Kjaergaard, J. Uusi-Kämppä, H. C. B. Hansen and B. Kronvang. 2009. Phosphorus retention in riparian buffers: review of their efficiency. Journal of Environmental Quality 38:1942-1955.

House, W.A. 2003. Geochemical Cycling of Phosphorus in Rivers. Applied Geochemistry 18:739-748.

Hutchinson Environmental Sciences Ltd.

210728_210005_Cobden SWM Background Review.docx

Hough, Stansbury and Michalski. 1981.

Ministry of Environment. 2010. Lakeshore Capacity Assessment Handbook.

Ministry of the Environment. (MOE) Revised 2012. Water Quality of 15 Streams in Agricultural Watersheds of southwestern Ontario 2004-2009. Seasonal patterns, reginal comparisons, and the influence of land use.

Ministry of Environment and Climate Change. 2015. Muskrat Lake Updated Phosphorus Budget.

Ministry of Natural Resources. (MNR) 1985. Wetland Data Record. Cobden Wetland.

- Ministry of Natural Resources and Forestry. 2020. Ontario Flow Assessment Tool. https://www.lioapplications.lrc.gov.on.ca/OFAT/index.html?viewer=OFAT.OFAT&locale=en-ca
- Muncaster Environmental Planning and Jp2g Consultants Inc. 2016. Environmental Impact Study Cobden Wastewater Treatment Plant Upgrades Part Lot 6, Concession 1, and Part Lot 7, Concession 2, Geographic Township of Ross, Now in the Township of Whitewater Region.

Ministry of Natural Resources. (MNR) 2000. Snake River Marsh Conservation Reserve (C42) Fact Sheet.

- Newcomer Johnson, T. A., S. S. Kaushal, P. M. Mayer, R. M. Smith and G. M. Sivirichi. 2016. Nutrient retention in restored streams and rivers: a global review and synthesis. Water 8(4) 116 doi: 10.3390/w804116
- South Nation Conservation. 2003. Updated Phosphorus Source Accounting Methodology for the Rural Water Quality Program. Prepared by Chris Allaway, University of Ottawa.

Province of Ontario. 2019. Snake River Marsh Conservation Reserve Management Statement.

- Reddy, K. R., R. H. Kadlec, E. Flaig and P. M. Gale. 1999. Phosphorus retention in streams and wetlands: a review. Critical Reviews in Environmental Science and Technology 29: 83-146.
- Richardson, C. J., N. E. Flanagan, M. Ho and J. W. Pahl. 2011. Integrated stream and wetland restoration: a watershed approach to improved water quality on the landscape. Ecological Engineering 37: 25-39.
- Schindler, D.W., Hecky, R.E., Findlary, D.L., Stainton, M.P., Parker, B.R., Paterson, J., Beaty, K.G., Lyng, M., Kasian, S.E.M. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of the United Stated of America.
- United States Environmental protection Agency (U.S. EPA). 2007. Report on the Environment. <u>https://cfpub.epa.gov/roe/indicator.cfm?i=31</u> accessed on May 19th, 2021.
- Withers, P.J.A. and H. P. Jarvie. 2008. Delivery and cycling of phosphorus in rivers: a review. Science of the Total Environment 400:379-395.

Hutchinson Environmental Sciences Ltd. 210728_210005_Cobden SWM Background Review.docx Appendix A. Stormwater Assessment, Planning and Implementation Contact List

Township of Whitewater Region

Stormwater Assessment, Planning and Implementation of Cobden Agricultural Area Contact List: Public, Agencies, Agricultural Organizations & Other NGO's

Agencies:

- 1. MECP: Victor Castro Victor.Castro@ontario.ca
- 2. OMAFRA: Peter Doris or designate
- 3. MNRF: Corrie Bourgoin (Tech/Pembroke Office) or Scott Smithers (Kemptville) scott.smithers@ontario.ca
- 4. MTO: Stephen Kapusta, MCIP, RPP <u>Stephen.Kapusta@ontario.ca</u>
- 5. County of Renfrew:
 - Paul Moreau, CAO
 - Craig Kelley, Director of Property and Development; and
 - Bruce Howarth, Manager of Planning Services.

Agricultural Organizations:

- 1. Renfrew County Federation of Agriculture: Filed Letter of Support for Study Contact on file: Reuben Stone
- 2. Renfrew County Soil and Crop Improvement Association: Filed Letter of Support for Study– Contact on file: Jennifer Doleman
- 3. Natural Farmers Union Renfrew County: Filed Letter of Support for Study
- 4. Ontario Federation of Agriculture (Renfrew County): Filed Letter of Support for Study
- 5. Renfrew County Beef: Contact on file: David McGonegal
- 6. Christian Farmers: Contact on file: Gerry Rook
- 7. Renfrew South District Women's Institute: Lillian Collins
- 8. Renfrew County Stewardship Council: Eric Smith

NGO's

- 1. Muskrat Watershed Council:
 - Karen and Rene Coulas;
 - Jim Lawrence and others.
- 2. Muskrat Lake Association:
 - Donald Deer
 - Gary Younghusband
 - Hugh Mitchell
- 3. Renfrew County Water Quality Leadership Group
 - Evelyn St. Amour (Muskrat Watershed Council)
 - Lynn Clelland (Agriculture)
 - Gerry Richards (Agriculture)
 - John Almstedt (Lake Clear)
 - Eric Smith (Agriculture)
 - Jennifer Doleman (Agriculture)
 - Kathryn Lindsay (Bonnechere Watershed Project)
 - Ole Hendrickson (Ottawa River Institute)
- 4. Ottawa River Keeper
 - Meagan Murphy

- 5. Ottawa River Institute
 - Ole Hendrickson
- 6. Bonnechere River Project
 - Kathryn Lindsay

Colleges and Universities:

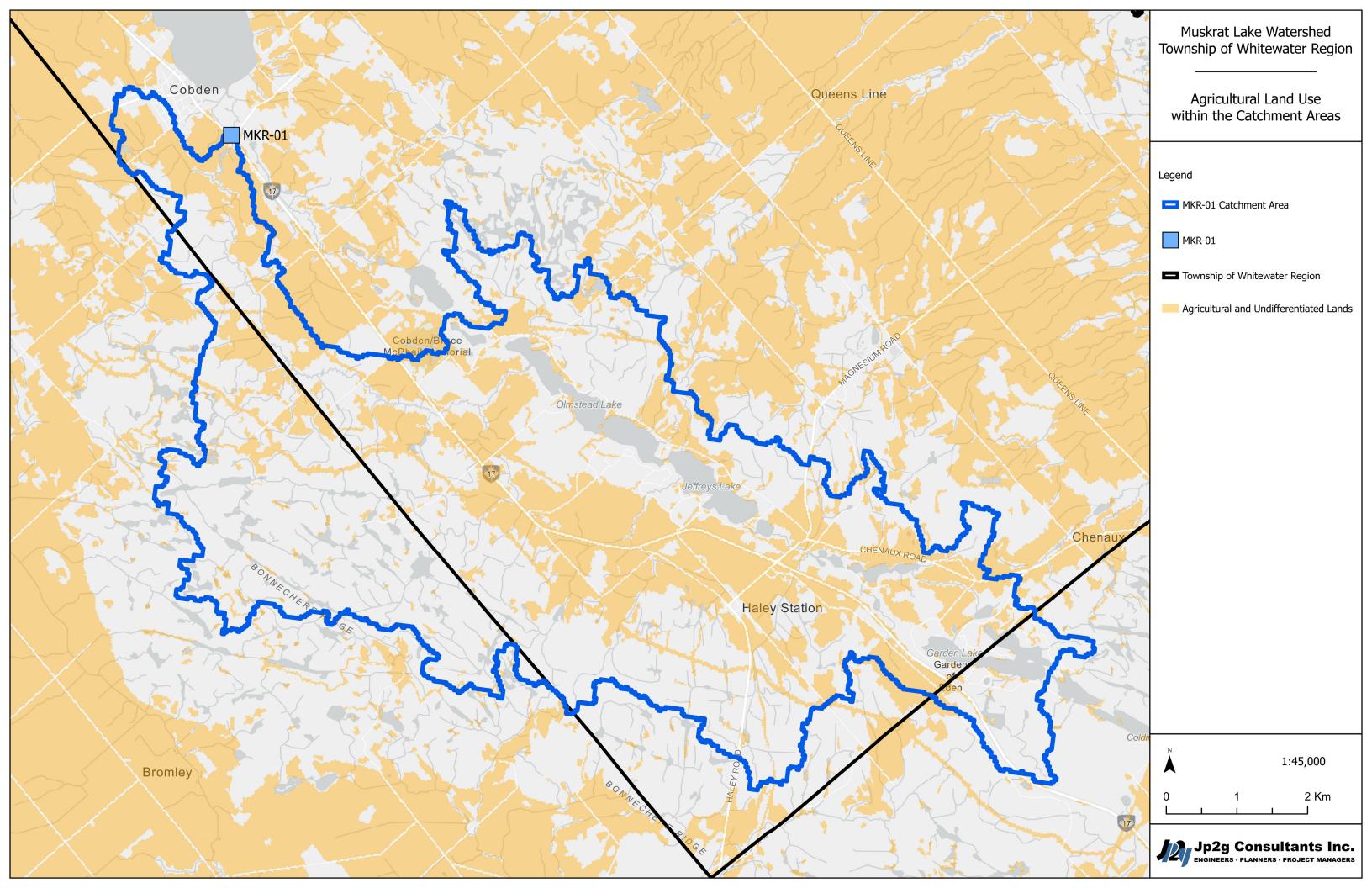
- 1. Algonquin College
 - Sarah Hall
 - Julie Sylvestre

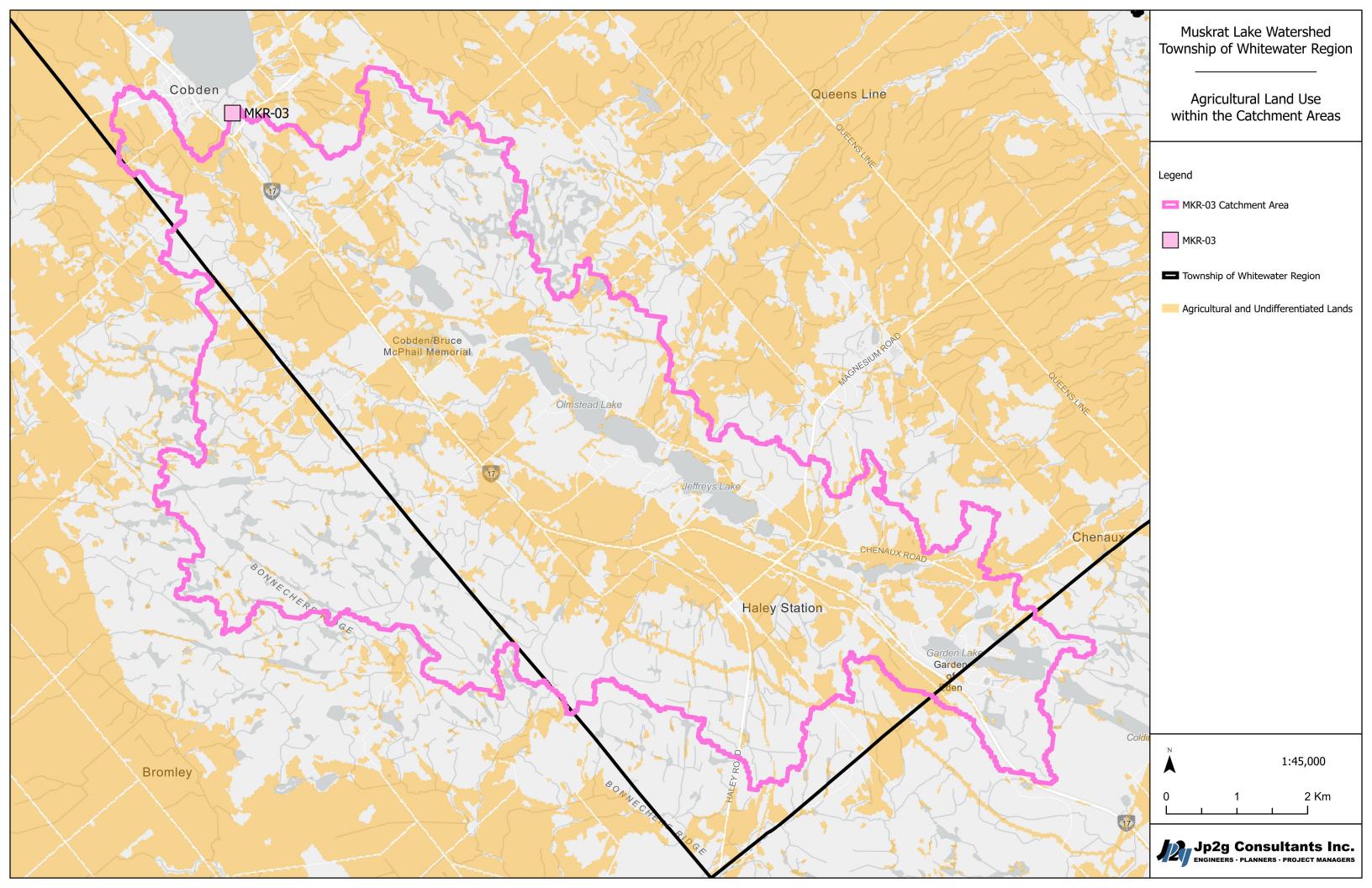
General Public:

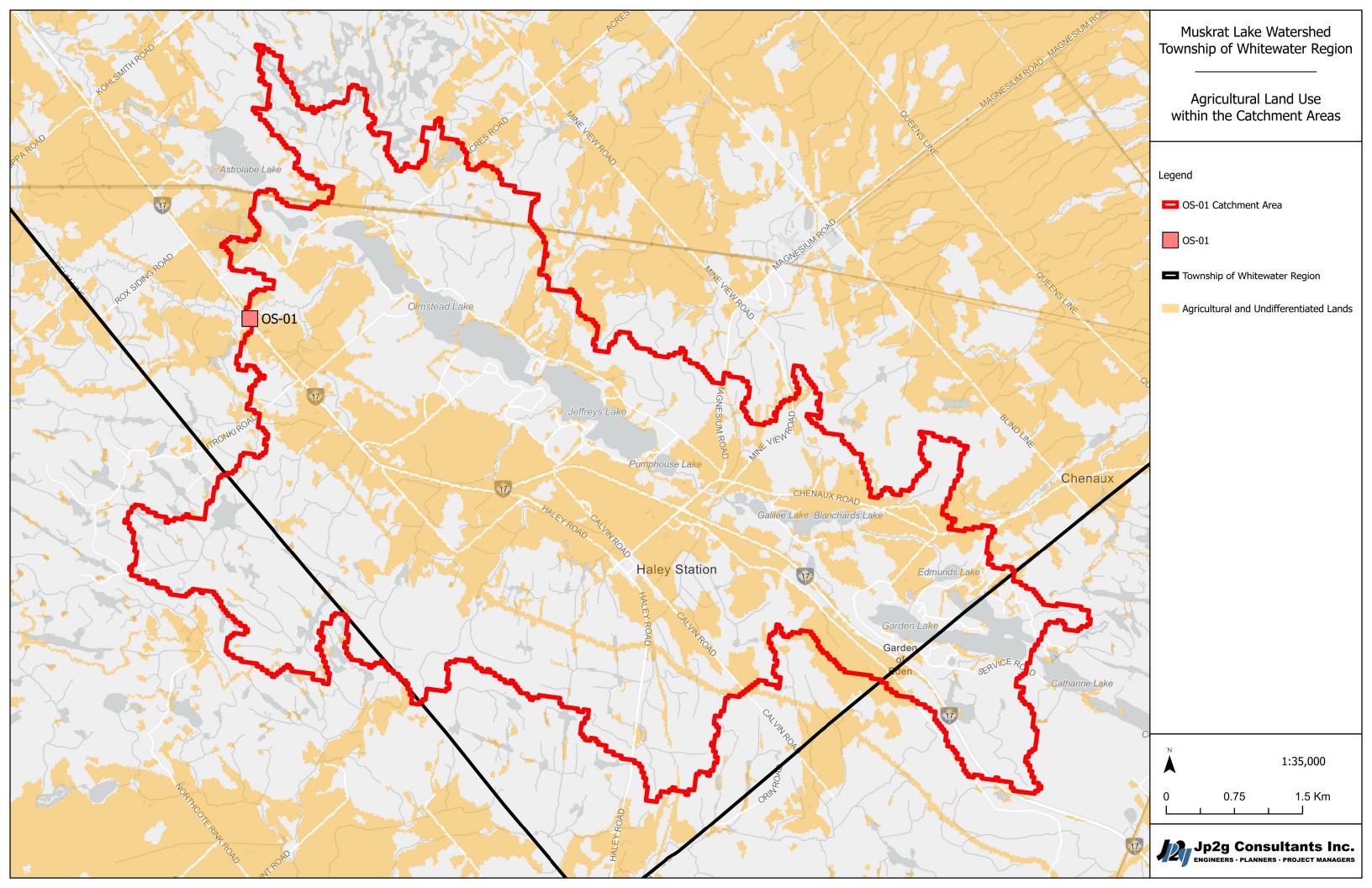
- Discussions with interested property owners, open house meetings etc. regarding best management practices and mitigation measures.
- Circulation list to be provided by the Township.

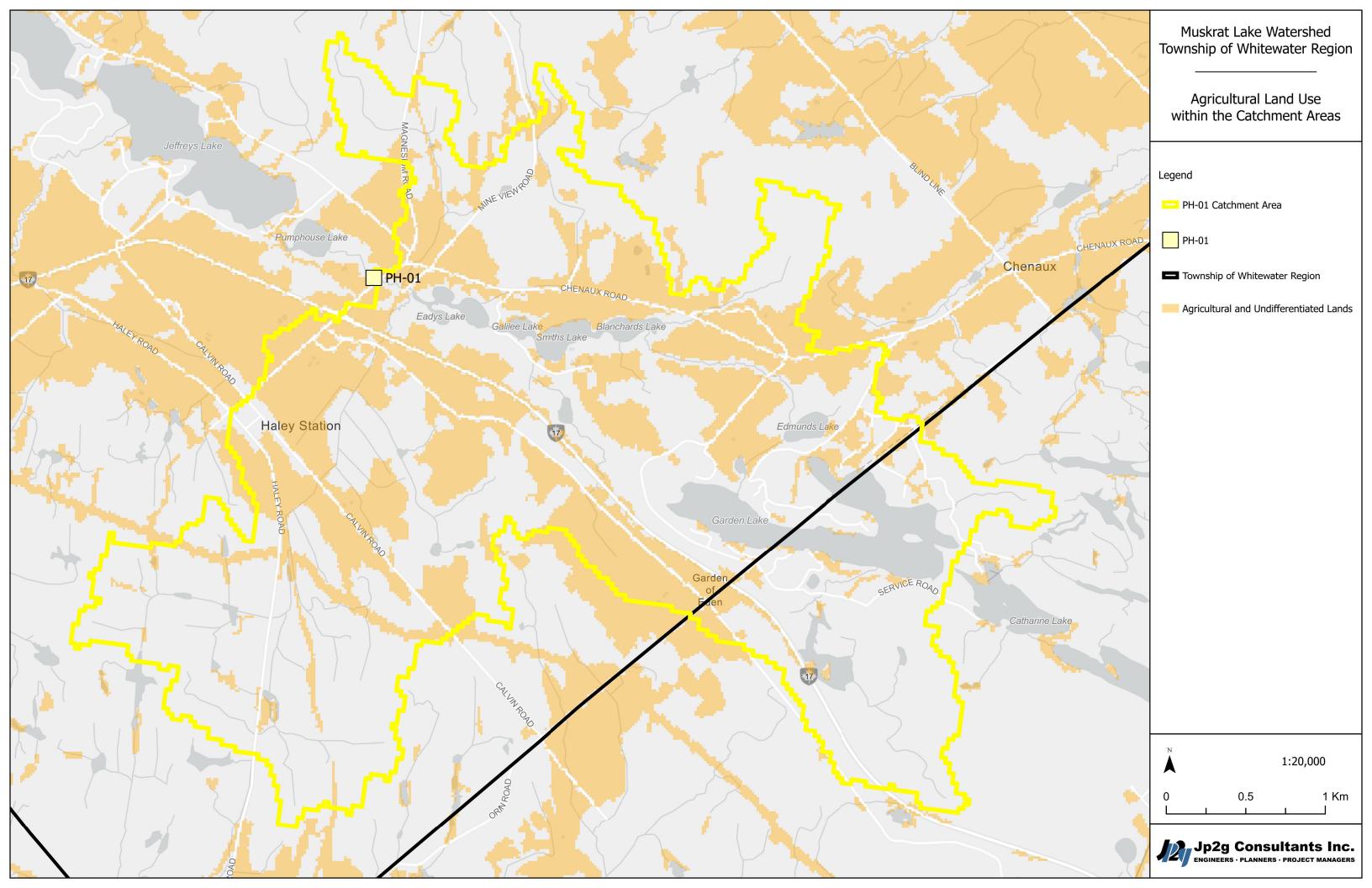
Purpose of Study:

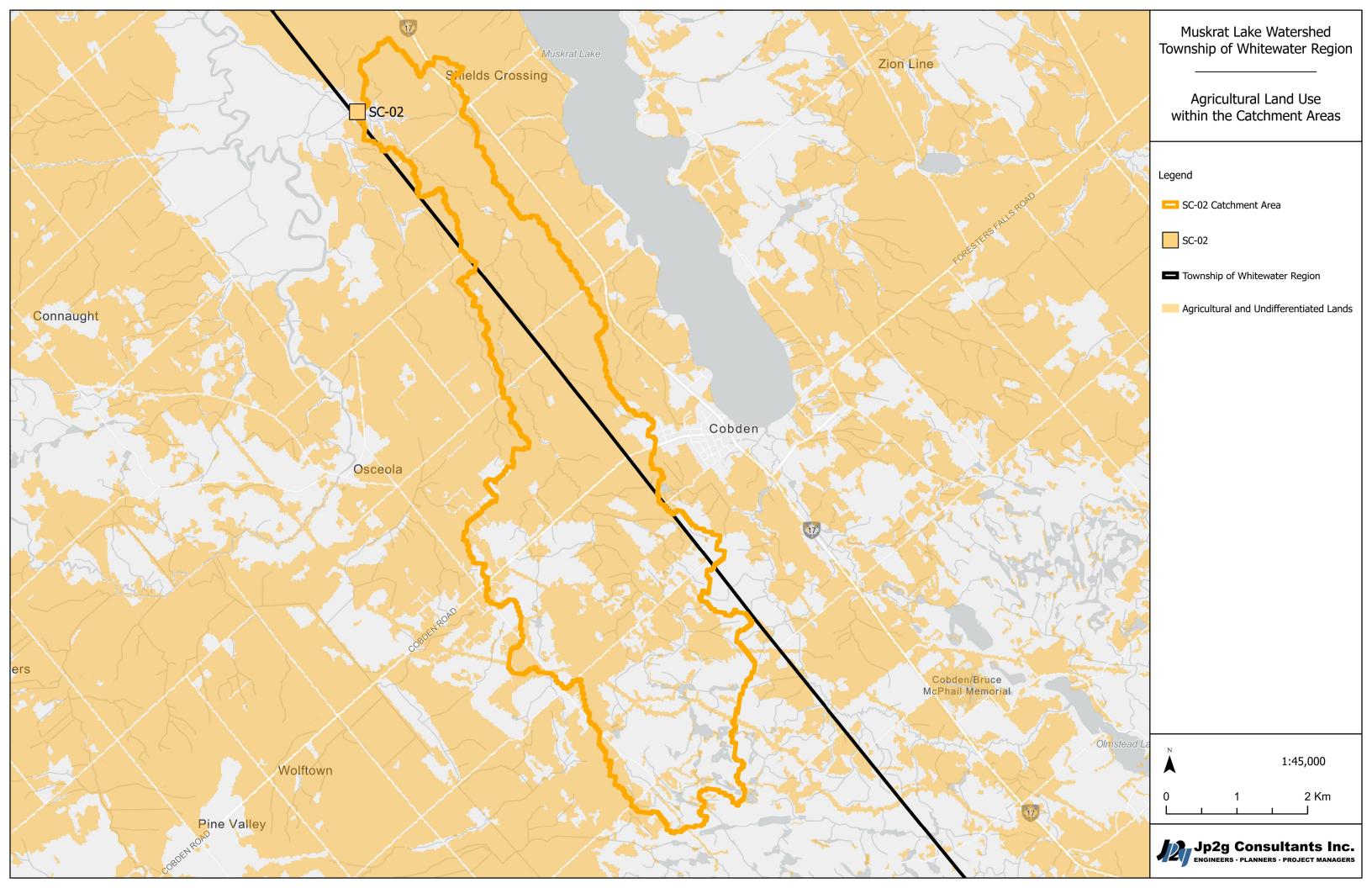
To prepare an action plan for the purpose of implementing best management practices to reduce nutrient loss for agricultural produces and improve water quality of Muskrat Lake and the Cobden and Snake River Provincially Significant Wetlands (PSWs).

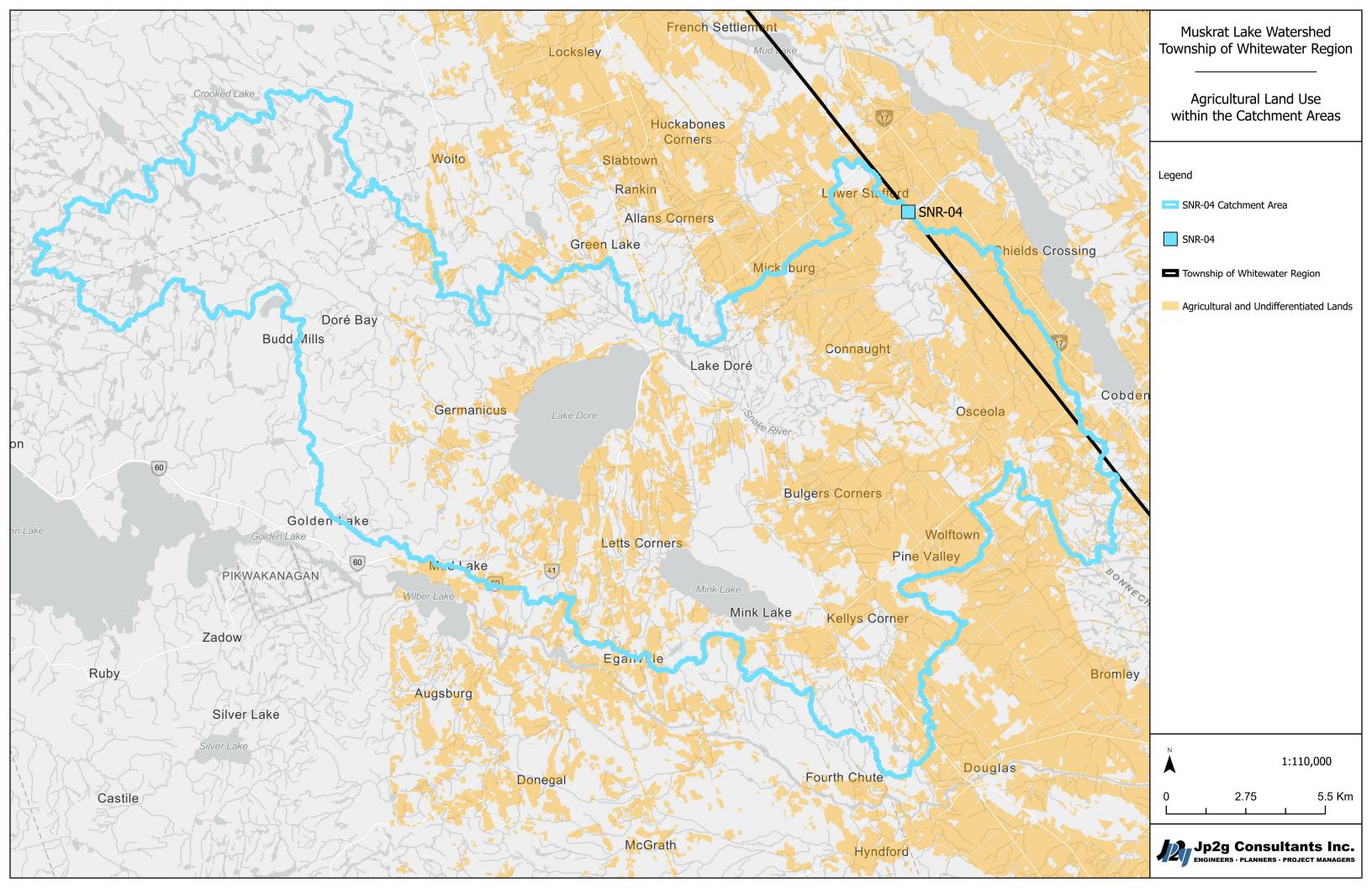

This project will characterize existing stormwater management in Cobden's agricultural area and water quality in adjacent watercourses, recommend and implement mitigation measures to reduce nutrient loading to PSWs and Muskrat Lake, develop information sharing amongst local and regional groups and residents, and develop partnerships between the agricultural sector and other local and regional organizations to help improve water quality in Muskrat Lake and the PSWs in both the short and long-term.

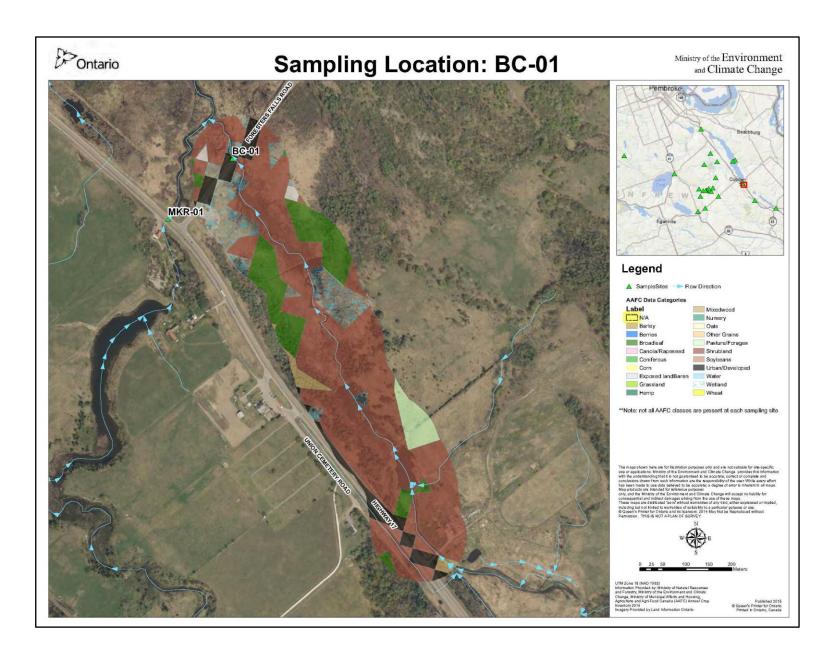

The project will provide a better understanding of the sources of nutrients/phosphorous loading from Cobden area agricultural producers leading to water quality deterioration of Muskrat Lake and the Cobden and Snake River Provincially Significant Wetlands. It will also quantify the amount of nutrients that can be reduced through implementation of best management practices and stewardship activities.

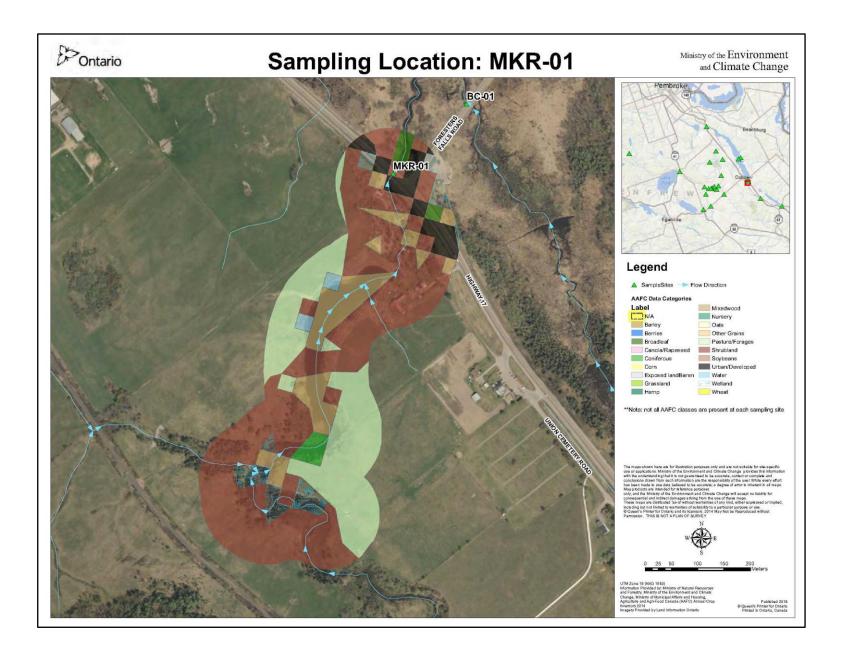

Hutchinson Environmental Sciences Ltd. and Jp2g are reaching out to agricultural, environmental, academic and agency partners for the purposes of explaining the study and establishing contacts for the purpose of keeping agricultural, environment partners and the public informed about and engaged in the work program.

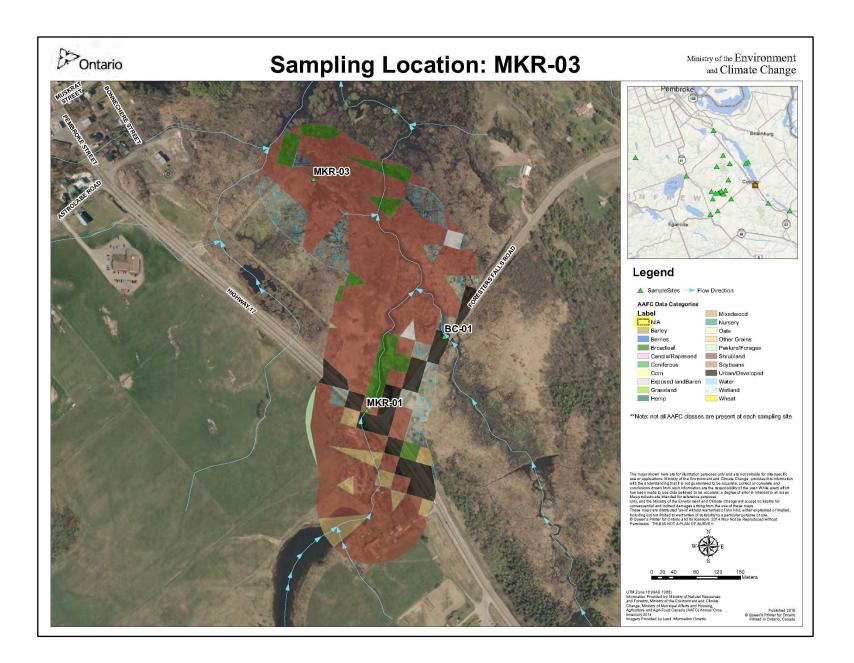

Appendix B. Agricultural Lands within Catchments of Water Quality Sampling Locations

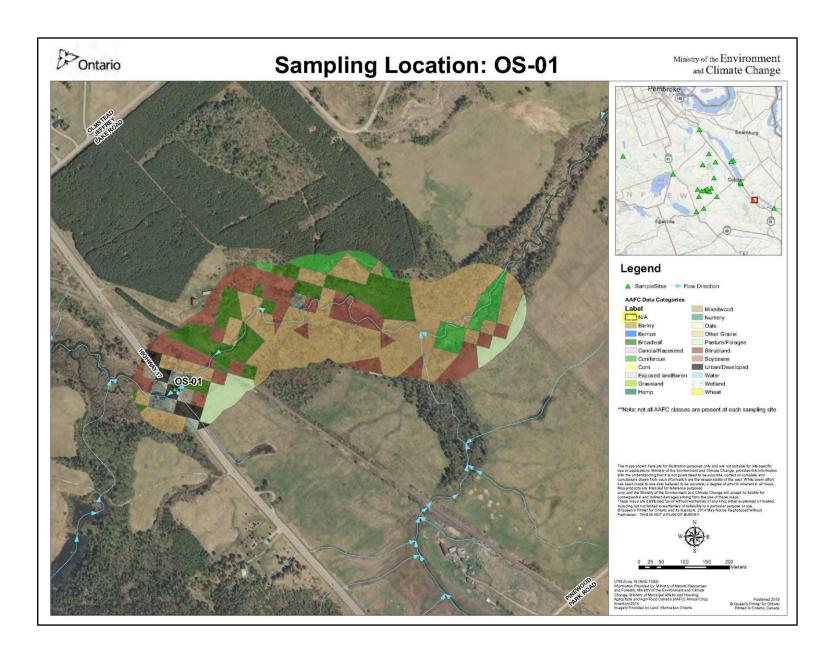











Appendix C. Land Uses within 1 km of Water Quality Sampling Locations (Dalton, 2019)

